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ABSTRACT 

A novel anion-exchange tesin containing three amine groups was prepared by reaction 

of a chloromethylated polys^rene-divinylbenzene (PS-DVB) resin with diethylenetriamine. 

After being protonated by contact with an aqueous acid, this resin can be used for ion-

chromatographic separation of anions. The charge on the resins can be varied firom +1 to 

+3 by changing the mobile phase pH. The selectiviQr of the new ion exchangers for various 

inorganic anions was quite different from that of conventional anion exchangers. The 

performance of this new anion exchanger was studied by changing the pH and the 

concentration of the eluent, and several different eluents were used with some common 

anions as testing analytes. ConductiviQr detection and UV-visible detection were applied to 

detect the anions after separation. The new resin can also be used for HPLC separation of 

neutral organic compounds. Alkylphenols and all^lbenzenes were separated with this new 

polymeric resin, and excellent separations were obtained imder simple conditions. 

For the separation of neutral compounds by electrokinetic chromatography, 

separations are usually carried out in predominantly aqueous solution in order to preserve 

the charged micelle necessary for the separation. We now show that PAH compounds can 

be separated efficiently by capillary electrophoresis in pure methanol or in aqueous-organic 

mixtures containing a high percentage of methanol. Sodium tetradecyl sulfate was the 

preferred surfactant. The effects of pH, solvent composition, surfoctant structure and 

surfactant concentration on the separations were studied. Reproducible migration times and 

linear calibration plots were obtained. 
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Addition of either ethanesulfonic acid or protonated triethylamine to the background 

electrolyte was found to markedly inq)rove the separation of protonated anilines by capillary 

electrophoresis. These additives appear to form a thin coating on the capillary sur&ice via 

a dynamic equilibrium. This results in a change in electroosmotic flow and reduces 

interactions of the sample cations with the silica surfu:e. A mixture of ten substituted anilines 

could be separated, including several positional isomers. Migration times of the sample 

cations were reproducible with a RSD less than 1.0%. 

Capillary electrophoresis with a water-soluble ion-exchange polymer in the 

background electrolyte is very efficient for the separation of organic and inorganic anions 

because the ion-exchange selectivity, as well as differences in electrophoretic mobility, can 

be used for separating sample ions. Poly(diallyldimethylammomum chloride) (PDDAC) was 

employed for this purpose. A very stable electroosmotic flow was obtained between pH 2.3 -

8.5 due to the strong adsorption of PDDAC onto the capillary wall. The effect of ion 

exchange on the migration of sample anions and their separation was controlled by varying 

the concentration of PDDAC, the concentration and ±e type of salt used in the C£ 

background electrolyte (BGE). Addition of organic solvent could also modify the sample 

migration and the separation. Baseline separations were obtained for anions with very similar 

mobilities, such as bromide and iodide, naphthalenesulfonates, and bi- and tri-

benzenecarboxylic acids. T)rpical separation efficiencies were between 195,000 and 429,000 

theoretical plates per meter. Ten replicate separations gave an average RSD of 1.0% for 

migration times of the sample anions studied. Excellent separations were obtained for a 

varied of samples, including a separation of 17 inorganic and organic anions within 6 min. 
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CHAPTER 1. GENERAL INTRODUCTION 

Dissertation Organization 

This dissertation begins with a general introduction containing a review of pertinent 

literature. This is followed by two research papers that have been published. The third and 

fourth papers have been submitted for publication. Permission from the publisher extending 

reproduction and distribution rights has been obtained. A general conclusion section follows 

these four papers. Each paper is similar to the published version, although additional figures 

and tables have been added. Figures and tables are contained in the text of the paper at the 

appropriate location. References cited within each paper are listed after the conclusions of 

each paper. 

Anion-Exchange Chroniiat(̂ raphy 

Ion exchange is one of the oldest separation processes described in the literature [1]. 

Modem ion-exchange chromatography was pioneered by Small et al. [2]. They developed 

ion-exchange resins of low capaci  ̂and high chromatographic efficiencies, and achieved 

automatic detection by introducing conductivity detection for ionic species. For a sensitive 

detection of ions via their electrical conductance, the effluent from separation colunm was 

passed through a "suppressor" colunm to reduce the background conductance of the eluent. 

In 1979, Fritz et al. [3] described an alternative separation and detection scheme for ion-

exchange chromatography, where the separation colunm was directly coupled to the 

conductivity cell. For this chromatographic setup, ion-exchange resins with low capacities 
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have to be eiiq>loyed so that ehients with low ionic strengths can be used. In addition, the 

ehient ions should exhibit low equivalent conductances to ensure sensitive detection of sanqple 

components. Since then, many other important improvements, including the developments 

of stationary phases with high efficiency [4-14], employment of various eluent species [15-

26], and introduction of different detection methods [21, 27-36], have make ion-exchange 

chromatography a versatile technique for both inorganic and organic analyses. Different 

retention models were also proposed for better understanding of retention behavior of ions 

on the ion-exchangers [37-42]. 

Anion-exchange chromatography is based on an anion-exchange process occurring 

between the mobile phase and anion-exchange groups on the stationary phase. Separation of 

anions is accomplished with quaternary ammonium groups of the stationary phases. Usually, 

when sample mixtures are loaded onto the separation column which has been equilibrated 

with the mobile phase, sample anions will replace the mobile phase anions that are attracted 

to the ion-exchange sites, so they are retained by the fixed charges on the stationary phase. 

Various sample ions remain a different length of time within the colunm due to their 

different afGniQr toward the stationary phase, therefore, separation is possible. Sample anions 

interact with the stationary phases through ion-exchange processes as well as other non-ionic 

interactions. The most important non-ionic interaction is adsorption via hydrophobic 

interaction or water-structure induced ion-pairing [43]. Highly polarizable inorganic anions, 

such as iodide, thiocyanate and oxygen-containing metal anions, and organic anions usually 

have much stronger retention on the stationary phases because of this adsorption phenomenon 

[44] than anions without adsorptive interactions. 
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Stationary Phases 

Stadonaiy phases used m anion-exchange chromatography can be characterized both 

by the nature of the ion-exchange groiq>s and by the nature of the supporting materials. Most 

IC separations of anions are performed on strong base anion-exchangers containing 

quaternary amine functional groups, although less substimted amines can form weak base 

exchangers. The supporting materials can be classified as inorganic and organic (polymeric) 

materials. Organic polymers are predominant as supporting material because they show very 

high stabiliQr toward extreme pH conditions. Anion-exchangers with different supporting 

materials can provide different selectivities, so the development of new stationary phases for 

anion separation have been of great interest. 

Polymer-based anion-exchangers 

Polystyrene-divinylbenzene (PS-DVB) copolymers, polymethacrylate, and polyvinyl 

resins are several organic materials that are tested for their suitabili  ̂as support materials 

for polymer-based anion exchangers. Polystyrene-divinylbenzene copolymers are the most 

widely used substrate materials [45-48]. Their stabiliQr over pH range between 0 and 14 

allows the employment of eluents with extreme pH values. The copolymerization of serene 

with divinylbenzene (DVB) is necessary to impart the mechanical stabiliQr to the resin. The 

degree of crosslinking is determined by the percentage of divinylbenzene in the reaction 

mixture. Reaction of PS-DVB copolymer to produce a strong-base anion-exchanger resin 

generally proceeds via chloromethylation using chloromethylmethylether in the presence of 

a suitable catalyst, such as zinc chloride. After chloromethylation, a second reaction with an 

amine produces the required anion-exchanger. Because of the extreme toxiciQr of 
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chloromethylmethylether and the difBcully in controlling the degree of chloromethylation, 

an alternative chloromethylation procedure, which used paraformaldehyde and concentrated 

hydrochloric acid in the absence of catalyst, was reported by Barron and Fritz [49]. This 

method allowed a good control of the ion-exchange capaci  ̂of the final resin. 

In addition to PS-DVB copolymers, several other polymeric anionrexchangers have 

also been studied as potential stationary phases for IC. An anion-exchanger based on 

methacrylate polymer was introduced in 1983 for separation of inorganic anions [50,51]. 

This type of resin provides very high chromatographic efficiency, but is more sensitive to 

eluent pH than PS-DVB resin. Polyvinyl-based anion-exchange resins have been available 

since 1984 [52,53]. These resins are stable at pH values between 0 and 14, allowing the use 

of many eluents; however, they exhibit low efficiency. 

There are advantages and disadvantages associated with these polymer-based anion-

exchangers. Polymer resins can tolerate eluents and samples with extreme pH values. This 

makes it possible that anions firom very weak acids, such as borate and cyanide, can be 

analyzed by ion chromatography. Poor efficiency was a problem at the early stage of IC 

using polymer resin [54]. With the advanced technology in making surface-fiinctionalized 

resins, modem, small diameter anion-exchanger resins can provide efRciencies equivalent 

or superior to those obtained on silica exchangers of similar characteristics [53]. One 

significant drawback of polymeric anion-exchanger resins is that they are subject to pressure 

limitations, especially for polymethacrylate. The softness of this type of material restricts the 

column length and the eluent flowrates that can be used. Another limitation about polymer 

resins is the permissible percentage of organic modifier in the mobile phase cannot go high 
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because of the crosslinking in the polymer structure. This restriction can often limit the 

{^roaches taken to regenerate the columns fouled with organic materials. 

Silica-based anion-exchangars 

Parallel to the development of organic polymers as anion-exchanger substrate, a 

number of silica-based anion-exchangers have been introduced over the past years [55-58]. 

Generally, silica substrates are grouped according to their particle size, and microparticulate 

beads with particle sizes in the range of 3 to 10 ftm are preferred to pellicular ones. Two 

groups of silica materials can be recognized. For polymer-coated materials, silica particles 

are first coated with a layer of polymer, and then the polymer layer is derivatized to 

introduce the desired fimctional groups for separations. For functionalized silica materials, 

functional groups are chemically bonded directly to silica particles. 

The prime advantage of silica-based materials is the favorable chromatographic 

efficiency [53]. Silica can be obtained as small particles with a narrow size distribution; 

being non-swelling and rigid, these materials can be packed at high pressure to produce a 

uniform and stable chromatographic bed that is not subject to stringent pressure or fiowrate 

limitations during usage. Moreover, organic modifiers can be used freely with functionalized 

silica materials to manipulate ion-exchange selectivities or to reduce column fouling by 

organic sample components. Another advantage is that the retention mechanism is fiequently 

simpler than that with other materials because of low probability of secondary interactions 

between solute ions and silica substrate [59]. 

A number of drawbacks exist with the use of silica-based anion-exchangers. One of 

these is the restricted pH range over which the columns can be operated, usually between 
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pH 2-8. The pH vahies below 2.0 can cause the cleavage of the functional groups from the 

silica substrate and result in the loss of ion-exchange capaci .̂ On the other hand, eluents 

or samples of alkaline pH could lead to the dissolution of silica matrix. Also, metal ions like 

Cu^ ,̂ Pb^  ̂ and Zn^  ̂ can be retained on the silica-based anion-exchangers and cause 

inference with anion analyses [60]. This happens because silica itself can act as both anion-

and cation-exchangers [61]; and metal ions can be retained also by adsorption of their anionic 

complexes formed with ehient species [62]. 

Other types of amon-exchangers 

Except the two most popular support materials described above, anion-exchangers 

based on other materials have also been developed, including latex-agglomerated anion-

exchangers [63,64], crown ether phases [65-67], silica and alumina phases [61,68,69]. A 

strong anion-exchange stationary phase of quatemized polyethylenimine-coated zirconia was 

also described [70]. Hollow fibers were used as anion-exchangers as well [71]. Although less 

popular than silica- and polymer-based anion-exchangers, these IC packing materials have 

different properties, and often offer distinguished selectivities. 

Mobile phases 

The range of mobile phase species used in anion-exchange chromatography is 

enormous. Several important eluent characteristics include the compatibility with the 

detection mode, nature and concentration of the competing ions, eluent pH, buffering 

edacity and organic modifier content. In general, the kind of eluent applied for anion 

separations depends mainly on the detection system employed as well as the solute anions 

being separated. For anion separation with chemical suppressors, salts of weak acids are 
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usually employed as eluents because they exhibit a low backgroimd conductivity after 

suppression. Carbonate, bicarbonate and their mixture [72, 73], borate [74], hydroxide [75] 

and some amino acid anions [76,77] with sodium as a suitable cation can fit into this 

category to separate a variety of anions. Non-suppressed anion-exchange chromatography 

requires the eluent species with low background conductivity to enable a sensitive 

conductivi  ̂detection of anions to be analyzed. Salts of aromatic carboxylic acids, such as 

benzoates, phthalates and pyromellitic acid, are the most widely used eluent species for the 

separation of anions by non-suppressed IC [20,22,78,79], although others are also used, 

including aliphatic carboxylic acids [80-83], sulfonic acids [84-86] and inorganic eluents [87-

89]. 

In many cases, additives can be included in the mobile phases to dynamically modify 

the stationary phases and bring different selectivities. Jun et al. modified a polymeric PRP-1 

reversed-phase column by coating it with hexadecyltrimethylammonium bromide and used 

it for the separation of inorganic anions and monocarboxylic acids [90]. Knox and Wan 

adsorbed polyethyleneimine onto porous graphitic carbon anrf obtained chromatographic 

performance similar to that of bonded ion-exchange silica gels [91]. Three sulfobetaine 

sur^tants were adsorbed onto a C18 colunm for separating inorganic anions with water as 

eluent [92]. 

Detection 

Conductivity detection is the most common detection mode for anion-exchange 

chromatography. Sample anions can be detected based on their conductance with or without 

chemical suppression of eluents. Amperometric and potentiometric detection are also 
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applicable in anionrexchange chromatography [93-9S], and they offer much higher sensitivity 

than conductivi .̂ Spectroscopic detection methods that have been used in anion-exchange 

chromatography include UV-visible [96], fhiorescence[97] and refractive index [98] 

detections. Detection of sample anions with all of the detection modes mentioned here can 

be performed either directly or indirectly. 

In Chapter 2 of this dissertation, a novel polymeric anion-exchanger based on 

polystyrene-divinylbenzene was prepared by modifying the PS-DVB resin particles with 

diethylenetriamine. Its capaci  ̂can be gradually changed by varying eluent pH. This new 

anion-exchanger was compatible with different mobile phase species for both direct UV and 

conductivity detection. It was applied for separating common inorganic anions and organic 

compounds. 

Capillary Electrophoresis of Basic Compounds 

Capillary electrophoresis (CE) has proven to be a rapid and versatile analytical 

technique that combines simplicity with high efficiency. The narrow diameter (normally 

between 20 and 100 ijm) of the silica capillaries allows the application of high voltages and 

ensures rapid heat dissipation, and coiiq)lex mixtures of anaiytes can be resolved and 

recorded as sharp signals due to lower risk of zone broadening. Jorgenson and Lukacs were 

the first to produce highly efficient CE separations [99,100]. Their publications drew the 

attention of a number of scientists fix>m various disciplines (analysts, physical chemists, and 

biochemists) and marked the beginning of the process for CE development. The introduction 

of commercial CE instrumentation from late 1988 also enhanced the speed of development 
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and application of this technique. Variatioiis in capillaiy design and the discovery of a 

number of modes of CE operation have enabled the continued success and application of this 

separation technique over the last 20 years. 

CE is a technique for separating charged molecules based on their movement through 

a medium under the influence of an applied electric field. The separation efficiencies can 

reach as high as 10^-10  ̂ theoretical plates. In its diverse modes of operation, including 

capillary zone electrophoresis (CZE) [101-103], micellar electroldnetic chromatography 

(MEKQ [104-108], capillary gel electrophoresis (CGE) [109-112], capillary isotacophoresis 

(CTTP) [113-115], c^illary isoelectric focusing (CIEF) [116,117], and capillary 

electrochromatography (CEC) [118-121], CE can be applied to analyze a wide variety of 

analytes ranging from low molecular weight analytes such as inorganic anions [122-126], 

metal cations [127-130], drugs [131-133] to larger molecules such as carbohydrates [134-

138], peptides [139-141], proteins [142-144], DNA [145-148], bacteria [149,150], and single 

cells [151-153]. 

Separation by CE is based on different electrophoretic mobilities of ions (/Xep. 

cmW-s), which are governed by their charge/size ratio [116], 

where q is the net charge, T; is the viscosity of the buffer, and r is the hydrated radius. 

According to Eq. 1, electrophoretic mobilities are independent of electric field (E) and 

capillary length (L). However, both mobilities (ji) and velocities (v) can be measured 

experimentally; 
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V = (2) 

" - 7 - ̂  ® £ C • K 
In 

where Ly is the length of the c^illary to the detector, is the total length of the capillary, 

t ,̂ is the migration time, and V is the applied voltage. 

A prominent phenomenon in CE is electroosmosis (EO). Electroosmosis occurs due 

to the surface charge on the wall of the capillary. An anionic charge on the capillary surface 

presumably owing to the ionization of silanol groups at most pH conditions results in the 

formation of an electrical double layer. When an electric field is applied, the layer of 

positive charge migrates toward the negative electrode. Since ions are solvated by water, 

the fluid in the buffer is mobilized as well and dragged along by the migrating cations, 

resulting in the bulk flow of liquid in the direction of the cathode, known as electroosmotic 

flow (EOF). The electroosmotic mobili  ̂(ji^J as defined by Smoluchowski in 1903 is given 

by 

V-eo = (4) 

where 6o is the dielectric constant, ij is the viscosity of the buffer, and  ̂ is the zeta potential 

on the surface. The magnitude of the EOF is largely affected by the pH of the solution. 

This is because the degree of dissociation of ±e silanol groups (which has a pK, of 6-7) on 

the capillary wall is dependent upon the pH of the solution, and so is the zeta potential. 

Other experimental conditions, such as temperature, the buffer concentration, organic solvent 
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concentration, and chemical additives, can also be manipulated to vary both magnitude and 

direction of the EOF. The measured mobilities according to Eq. 2 are truly the sum of the 

electrophoretic and electroosmotic mobilities (jia): 

^ 

C£ separation of basic compounds are usually achieved through different approaches. 

Organic bases can be separated as protonated cations by operating at acidic pH [154-159]. 

A popular method of choice for separation of basic compounds is micellar electroldnetic 

chromatography (MEKC). Various analytes have been successfully resolved by MEKC, 

including pharmaceuticals [160,161], amino acids [156,162-164], proteins and peptides [165-

167], and nucleosides and bases [168,169]. Most conmionly used surfactants in MEKC are 

sodium dodecyl sulfate (SDS) and ce^ltrimethylammonium chloride (CTAC). Nonionic and 

zwitterionic surfactants have also been employed for MEKC [170,171]. For MEKC 

separation of chiral compounds, synthetic or naturally occuring chiral surfactants are needed 

for the chiral resolution [172-174]. These surfactants can form micelles in the background 

electrolytes under certain conditions, thus allowing the partitioning of the analytes between 

micelles and bulk solution. Basic drugs were also separated by CE in nonaqueous media 

[175]. 

Another way to achieve the separation of basic compounds, especially for basic 

proteins, is to coat the silica capillary surface. Proteins are polyelectrolytes, and adsorption 

usually occurs because of columbic attractions between the negatively charged capillary 

surface and the positive charges on the protein molecules, resulting in either tailing peaks 
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or even complete adsorption of the protein to the capillary surface, i.e., no peaks. Both 

permanent and dynamic coating has proven to be successful in overcoming this problem. 

Capillaries can be coated by various cellulose derivatives [176-178], poly(ethylene glycol) 

(PEG) and poly(vinyl alcohol) (PVA) [179,180]. Cationic amines have been applied for this 

purpose as well [167,181]. 

Chapter 4 of this dissertation deals with the CE separation of some alkyl-substituted 

anilines using ethanesulfonic acid or triethyiamine as the BGE additives. These additives can 

decrease, eliminate or reverse the EOF, preventing the adsorption of the basic analytes onto 

the capillary surface. Because these additives are quite small, they usually form very thin 

coating on the surface, thus are easy to remove by simply rinsing capillary with organic 

solvents and water. 

Nonaqueous Capillary Electrophoresis 

Nonaqueous capillary electrophoresis (NACE) has been gaining popularly over the 

last several years [182-186]. Compared with CE separations performed in aqueous solution, 

NACE utilizes organic solvents as separation media to alter electroosmotic flow and 

electrophoretic mobilities of analytes and to achieve different selectivities [187]. Organic 

solvents provide various polari ,̂ viscosity, dielectric constant and autoprotolytic properties, 

so analytes can be solvated and migrate differently in organic solvents. Highly hydrophobic 

compounds, such as polycyclic aromatic hydrocarbons (PAHs), are especially suitable for 

the NACE analysis because they have better solubility in many organic solvents than in 

aqueous phase. 
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To make an appropriate medium for NACE analysis, an organic solvent should be 

able to maintain a stable electric current between electrodes, requiring an adequate solubiliQr 

for added ionic species; the solvent should allow a reasonable electroosmotic flow and 

electrophoretic mobili  ̂ for the analyte, so analysis can be complete within a reasonable 

dme; the solvent should provide enough selectivity for the separation, which is based on the 

differences in the effective charge-to-hydrodynamic radius ratio of the analytes. The 

advantages about NACE are that currents are lower in nonaqueous media than they are in 

aqueous buffers of the same ionic strength [184], so it is possible to achieve high separation 

efficiency; also, CE using nonaqueous media is more compatible with mass spectrometry 

detection. However, organic solvents generally absorb light in the UV region more than 

water does, which is a clear disadvantage. In this case, indirect UV detection [188,189] or 

alternative detection methods [190] can be applied. For example, improved detection limits 

were reported for N,N-dimethylformamide with electrochemical detection for inorganic 

anions when compared with the results in aqueous buffer with UV detection [188]. Various 

solvents have been tested for NACE separations, among which methanol [182,183,186, 191-

194] and acetonitrile [194-198] are most commonly used because of their popular use as 

organic modifier in CE applications and their low toxicity compared with many other 

solvents. Formamide, N-methylformamide, N, N-dimethylformamide and dimethyl sulfoxide 

have also been the choice for many NACE analyses [188,194,199-202] because they can 

often provide unique selectivities and allow fast analysis. 

Highly hydrophobic compoimds such as PAHs have been the subject of many reports 

[194,195,203-210] due to their abundance in environment and the adverse health effects to 
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which they are linked. Micellar electrokinetic chromatography (MEKQ with various 

surfactants [207,209,210] has been most successful for this type of separations because 

charged micelles allow the partition of these analytes between bulk solution and micelles, and 

nonionic analytes can migrate under the electric field by interacting with micelles. 

Separations of PAH compounds with cyclodextrans (CD) and CD-modified MEKC 

[205,206,208] have been possible as well. CD additives improve the separation by forming 

inclusion complexes with analytes. Because of the very high hydrophobicity of PAH 

compounds, organic modifiers [211-213] are firequently used to increase their solubility in 

aqueous electrolytes, which could influence the micelle properties and thereby the separation 

mechanism. 

Several groups described the separation of PAH compounds by NACE. Six PAHs 

were separated by Walbroehl and Jorgenson [214] with electrolyte solution containing 

tetraalkylammonium ions and 50 - 100% acetonitrile. Miller et al [195] obtained PAH 

separations in acetonitrile with planar organic cations, such as tropylium ion and 2,4,6-

triphenylpyrylium ion, and they found that charge-transfer interactions as well as electrostatic 

and dispersive forces play important roles in PAH-cation binding. Nonaqueous media 

containing 65 % acetonitrile without supporting electrolyte was used for resolution of 11 PAH 

con^unds by capillary electrochromatography (CEQ [194]. 

Chapter 3 of this dissertation described the NACE separation of PAH compounds in 

pure methanol or methanol-water mixture containing a high percentage of methanol. Several 

anionic surfactants as well as their concentrations were con^ared about their effect on the 

separation, and other in^rtant parameters were also studied, including apparent pH of the 
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electrolyte and the effect of methanol content on analyte migrations. 

Ion ChnMnatography - Capillary Electrophoresis 

Ion chromatography and capillary electrophoresis are two major techniques for doing 

ion analyses. The different separation mechanisms make them complementary to each other. 

Generally, ion chromatography suffers from the poorer separation efficiency and lower 

resolving power than CE. On the other hand, some isomeric ions are not easily separated by 

CE purely based on the differences in electrophoretic mobilities. The technique of combining 

ion chromatography with CE sounds very promising for the separation of closely related 

ionic compounds that cannot be separated by CZE itself. 

Ionic polymers have been frequently applied to improve electrophoretic separations. 

For example, polyethyleneimine [215,216], polyamide [217], polybrene [216,218] and other 

polycationic polymers [216] have been examined to see their potential in improving protein 

separations by CE. Capillary columns coated with glycoside-bearing polymer were also 

characterized for separating basic proteins [219]. However, these polymers work by coating 

the silica capillary surface, so the surface becomes positive and prevents the adsorption of 

positively charged proteins. They are not really involved in modifying the selectivity. 

Terabe et al [220-222] were the first to employ ion-exchange interactions for CE 

separation. They proposed a simple theory for this combined separation mechanism, and 

isomeric organic acids were easily resolved by adding an ion-exchange polymer to CE 

electrolytes. Cassidy and coworkers also reported some of their work in this area [223-225]. 

Okada separated several aromatic disulfonates by CE based on their ion-pair formation with 
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polyanunomum ions [226]. Poly ammonium ions with various chain lengths were expected 

to act as a molecular ruler and recognize the structures of aromatic disulfonates. 

Ion-exchange capillary electrochromatography (lE-CEC) has been reported by Smith 

and Evans [227] for the efScient analysis of highly polar pharmaceutical compounds, such 

as antidepressants imipramine and nortripQrline, etc. Using capillary packed with strong acid 

cation-exchangers, plate numbers in excess of eight million per meter were observed. Wei 

et al [228] also demonstrated the potential of lE-CEC for separation of basic pharmaceutical 

compounds. 

In chapter 5 of this dissertation, electrophoretic separation of both inorganic and 

organic anions was obtained with an anion-exchange polymer added to the background 

electrolytes. Unlike previous work in this area where the efTect of added salt on the 

separation was neglected, a detailed study about the and concentration of added salt, as 

well as other important variables including electrolyte pH, and type and concentration of the 

ion-exchange polymer was carried out. Excellent separations for anions with similar 

mobilities were obtained rapidly and efficiently. 
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CHAPTER 2. NOVEL POLYMERIC RESINS FOR 
ANION-EXCHANGE CHROMATOGRAPHY 

A paper published in J. Chromatogr. 1998, 793, 231 

Jie Li and James S. Fritz 
Ames Laboratory - U.S. Department of Energy and 

Department of Chemistry, Iowa State Universi  ̂
Ames, Iowa 50011, U. S. A. 

Abstract 

A novel anion-exchange resin containing three amine groups was prepared by reaction 

of a chloromethylated polystyrene-divinylbenzene (PS-DVB) resin with diethylenetriamine. 

After being protonated by contact with an aqueous acid, this resin can be used for ion-

chromatographic separation of anions. The charge on the resins can be varied from +1 to 

+3 by changing the pH at which the ion chromatographic separation was carried out. The 

selectiviQr of the new ion exchangers for various inorganic anions was quite different from 

that of conventional anion exchangers. The performance of this new anion exchanger was 

studied by changing the pH and the concentration of the eluent, and several different eluents 

were used with some conmion anions as testing analytes. ConductiviQr detection and UV-
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visible detection were applied to detect tbe anions after separation. The new resin can also 

be used for HPLC separation of neutral organic compounds. AUgrlphenols and alkylbenzenes 

were separated with this new polymeric resin, and excellent separations were obtained under 

simple conditions. 

1. fioLtrodactioii 

Ion chromatography is one of the most common and most widely used techniques for 

the separation of various ionic compounds. Two types of ion chromatography are in practical 

use now, the suppressor-based system developed by Small et al.[l], and single-column ion 

chromatography introduced by Fritz et al.[2]. Since the introduction of ion chromatography, 

a lot of research has been conducted to understand and vary the ion-exchange selectiAdQr and 

improve ion chromatographic separation of anions[3-I3], especially in the development of 

stationary phases[8-13]. Several types of stationary phases for the separation of anions have 

been developed, including silica-based anion exchangers[13], poly(styrene-divinylbenzene) 

(PS-DVB) copolymer amon-exchangers[8-ll], and macroporous hydroxyethyl methacrylate-

based anion-exchanger[12]. There are also mixed-bed ion-exchange materials developed to 

resolve anions and cations simultaneously[14-16]. 

In anion-exchange chromatography it is known that a mobile phase containing a 2-

anion is generally a more powerfid eluent than a 1- anion at the same concentration. This 

idea has been carried a step fiirther by using the 3- anion of 1,3,5-benzenetricarboxylic acid 

or the 4- anion of pyromellitic acid in the mobile phase[17, 18]. Since ionization of 

polycarboxylic acids occurs in a stepwise fashion, the average charge on these compounds 
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can be reduced simply by mafcing the pH more acidic. In this way the eluting power of the 

mobile phase can be varied by changing pH. 

Although polymer resins containing polyethylenimine have been used to separate 

proteins by anion-exchange chromatography[19, 20], most of the anion-chromatographic 

separations are performed on columns containing single quaternary amine fimctional groups. 

Such groups are ionized completely so that changes in pH have little effect on the resins 

afiRni  ̂for sample anions. In this paper a new ^pe of anion exchanger is described for the 

separation of anions by ion chromatography. The anion exchanger is a PS-DVB copolymer 

containing diethylenetriamine fimctional groups. Thus, such a group contains three amino 

groups in the same molecule. The charge on the triamine groups can be varied by changing 

the pH so that one, two or all three of the nitrogen atoms in each group are protonated. This 

constitutes a powerful tool to alter the selectiviQr of the resin. 

2. Experimental 

2.1. Chromatographic system 

The chromatographic system consisted of several components. A Dionex DXP pump 

(Dionex, Sunnydale, CA, USA) was used to deliver a flow of 1 ml/min. A 7010 Rheodyne 

injector (Rheodyne, Berkeley, CA, USA) delivered lO-^il samples which were detected with 

either a Kratos Spectroflow 783 UV absorbance detector (Kratos Analytical Instrument, 

Ramsey, NJ, USA) or an AUtech (Deerfield, IL, USA) 320 conductivity detector. 

Separations were recorded by a Servogor 120 chart recorder (Abb Goerz Instruments, 

Vienna, Austria) and a Shimadzu C-R3A Chromatopac integrator (Shimadzu Corporation, 
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Kyoto, Japan). Columns were packed with a Shandon Southern (Sewickley, PA, USA) 

HPLC packing pump at 3000 p.s.i. (1 p.s.i. = 6895 Pa). 

2.2. Preparation of amon-exchaiige resins 

Figure 1 shows the chemical structures of the anion-exchange resin made in our 

laboratory. This resin was prepared from 5-  ̂macroporous polysQrrene-divinylbenzene 

(Sarasep, Santa Clara, CA, USA). A 5-g amount of resin was wetted with glacial acetic acid 

(ca. S ml/g resin) then filtered and rinsed with concentrated hydrochloric acid. A 75-ml 

volume of concentrated hydrochloric acid with 2.2 M formaldehyde was added to the resin 

with stirring. The resin mixture was reacted for 2.5 minutes then poured into ice water to 

quench the reaction. After filtration and washing with deionized water and methanol, the 

chloromethylated PS-DVB resin was mixed with 25-40% diethylenetriamine in methanol. 

CHg — NH — CHg — CHg — NH— CHg — CH2 — NHg 

CHg - CHg — NHg 

CHg — CHg — NHg 

Fig. 1. Schematic description of the structure of the new anion-exchange resins. 
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This resin mixture was reacted for 24 hours at temperature 70 - 80°C, after which the 

reaction was quenched with ice water. The resultant rssin was washed with deionized water, 

2-propanol and methanol, and then dried in air for overnight. Four batches of resin were 

prepared by this procedure. The capacity of the protonated resin, measured by acid-base 

titration with sodium hydroxide, was 0.175 ±0.013 meq per gram of dry resin. The average 

nitrogen content by elemental analysis was 0.26 meq/g. The lower exchange capacity could 

be due to incomplete protonation of the three nitrogens or caused by some nitrogens being 

located deep within the resin. 

2.3. Reagents and chemicals 

Methanol, 2-propanol and acetonitrile were of HPLC grade and used as obtained firom 

Fisher Scientific (Pittsburgh, PA, USA). Diethylenetriamine was 99+% and obtained firom 

Aldrich (Milwaukee, WI, USA). All salts and other reagents were of the best grade available 

and used as obtained from Fisher Scientific, Aldrich, J. T. Baker (Phillpsburg, NJ, USA) 

and Lancaster (Windham, NH, USA). All eluents were prepared daily. Stock solutions were 

used to prepare all sample solutions by diluting to desired concentrations with D.I.water or 

mobile phase. A Bamstead Nanopure n system (Sybron Bamstead, Boston, MA, USA) was 

used to further deionize distilled water for all eluents and sample mixtures. 

2.4. Chromatographic procedures 

A flow of 1 ml/min was selected for all chromatographic separations. The column was 

protonated with SO mM hydrochloric acid before the desired eluent was used. Sample 
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injecdons were made when the baseline was stable. The eluted species were detected by UV-

vis detector at 200 nm or 254 mn with an ou^ut range of 0.010 AUFS, or by a conductivity 

detector with the ouq)ut range of 0.5 S. 

Capacity factors, k', were calculated according to expression: k' = (tr-to)/t .̂ The 

system dead time, to, used to calculate the capaci  ̂factor k', was measured by injecting 

D.I.water into the system. An average of at least three replicates was used to perform all 

calculations. 

3. Results and Disciission 

3.1. Conditions for separation 

Several anions were separated chromatographically at pH 7.5-7.7 using different salts 

in the mobile phase with direct UV detection at 200 mn. The results in Table 1 show that 

perchlorate is a significantly better eluting anion than chloride. However, sulfate and 

hydrogen phosphate both give even shorter retention times by virtue of their 2- charge. 

Not all anions absorb sufficiently to use direct UV detection. When conductiviQr 

detection was used, potassium hydrogen phthalate QQIP) or sodium benzoate was the 

preferred material to be used in the mobile phase. The relatively large phthalate or benzoate 

anions have lower conductivities than the anions to be separated and detected. 

Chromatograms for separation of inorganic anions are given in Figure 2 using KHP at pH 

3.8 and in Figure 3 using sodium benzoate at pH 6.4. At pH 3.8, the triamine resin is more 

fully protonated than it is at pH 6.4. This pH effect is demonstrated particularly well for the 

divalent sulfate anion. The retention time for sulfate is ca. 21 min at pH 3.8, but is only ca. 
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Table 1. Retention times of several inorganic anions with different eluents". 

Retention Time, min. 

Amon 
NaClO^" Na2S04'' NaCl" Na^HPO^" 

Bromide 3.45 2.15 4.51 1.98 

Nitrate 3.98 2.75 5.55 2.54 

Iodide 6.25 7.01 12.4 5.95 

Thiocyanate 13.7 ND  ̂ 25.6 17.4 

a. Colmnn was 10 cm long packed with PS-DVB triamine resin. 

b. Each eluent is 5.0 mM at pH 7.5-7.7. 

c. ND = not detected. 



www.manaraa.com

Figure 2. Separations of inorganic anions on colunm packed with PS-DVB triamine resin. 
Column: 100 x 4.6 mm.; detection: conductivity. Eluent: 2.5 mM potassium hydrogen 
phthalate, pH 3.77. Peaks: (A) 1 = chloride (30 ppm); 2 = bromide (118 ppm); 3 = nitrate 
(85 ppm); 4 = iodide (300 ppm); 5 = sulfate (100 ppm). (B) 1 = iodate (200 ppm); 2 = 
bromate (2(X) ppm); 3 = nitrite (80 ppm); 4 = chlorate (150 ppm). 
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Figure 3. Separation of inorganic anions on triamine column. Colunm: same as Figure 2. 
Eluent: 5.0 mM sodium benzoate at pH 6.40. Peaks: 1 = fluoride (22 ppm); 2 = chloride 
(20 ppm); 3 = bromide (63 ppm); 4 = nitrate (45 ppm); 5 = iodide (200 ppm); 6 = sulfate 
(100 ppm); 7 = molybdate (200 ppm); 8 = chromate (200 ppm). 
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15 min at pH 6.4 despite the fact that benzoate is generally considered to be a weaker eluent 

than phthalate. 

In Figure 3 it will be noted that a good separation was obtained for eight anions with 

the divalent anions sulfate, molybdate and chromate eluting much later than the monovalent 

anions. This imique selectivity with the new resin is quite different from that on the 

conventional anion exchangers, such as trimethylamine modified PS-DVB resin where sulfate 

and chromate ions were eluted earlier than iodide[2I]. The classical plate numbers were 

calculated for the first six peaks, and the results were smmnarized in Table 2. The average 

plate number (N = 2,900 for a lO-cm column) compares well with ordinary conmiercial 

colimms. 

3.2. Effect of pH 

Perhaps the most interesting aspect of the triamine resin is its ability to assume a 3+, 

2+ or 1+ charge with varying degrees of protonadon. The higher the charge on the 

protonated triamino functional groups, the more strongly a sample anion should be retained. 

The effect of pH was studied by using a fixed concentration (15 mM) of sodium perchlorate 

in the mobile phase and carefully equilibrating both the resin and the mobile phase at various 

pH values. Since perchlorate is the anion of a strong acid, sodium perchlorate should be 

completely ionized over the entire pH range that was used. 

The results of the pH study for six anions are given in Figure 4. As expected, the 

capacity factors for bromide, nitrate and iodide decrease steadily as the pH is raised and the 

resin nitrogens become less fiilly protonated. Thiocyanate, which is more strongly retained 
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Table 2. Theoretical plate numbers (N) for anions separated on a triamine resin column. 
Conditions: 100 x 4.6 mm colimm, 5.0 mM sodium benzoate at pH 6.4, conductiviQr 
detection. 

Peak No. Anion N 

1 Fluoride 4,900 

2 Chloride 3,800 

3 Bromide 2,100 

4 Nitrate 2,100 

5 Iodide 2,000 

6 Sulfate 2,500 
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Figure 4. Eluent pH vs. anion capacity factor, k'. Conditions: 100 x 4.6 mm column; 15 
mM sodium perchlorate at different pH value; UV detection at 200 nm. Symbols: O Br'; 
•  NO3-;  o  I- ;  •  SCN; •  CrO/- ,  •  MoO/.  
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by the resin, shows a larger change in k' with pH. The decrease in k' is particularly great 

going from approximately pH 2.2 to pH 3.4. 

Chromium(VI) shows a more complicated pattern with respect to changing pH. The 

k' of chromate ion decreases at pH 2 to pH 3.5, then increases at pH of 3.5 to 6, and 

decreases again as pH increases further. The possible reason is that chromate ion undergoes 

some chemical reactions at acidic conditions, e.g.: Cr04 '̂ + = HCr04' (for chromic 

acid, H2Cr04: pKai = 0.74, pKas = 6.49), and the resultant monovalent anions are retained 

more weakly than chromate ions due to the charge difference. Another possible reaction is 

the conversion of chromate ions to dichromate ions as shown by the following 

reaction: 2Cr04 '̂ + 2H'̂  = Cr207^" + HjO, which can be protonated in acidic solution to 

produce the monovalent ions, such as HCraO?'. That would also give a decreased retention 

time. A spectral shift, presumably from dichromate to chromate or hydrogen chromate, 

occurs with rising pH and particularly between about pH 5 - 6 (Figure 5). 

Molybdate ions were not detected at pH below 4.5. The most likely explanation for this 

is that molybdenum(VI) is retained too strongly on the stationary phase to be eluted in a 

reasonable time. 

3.3. Other anion separations 

Gold(III) and the platinum group elements form stable chloro anions in acidic solutions 

containing chloride. With conventional anion exchangers, these conq>lex anions are retained 

so strongly that chromatographic separation is difficult. But with the new triamine resin, a 

good separation of AuCV, BUiCl^  ̂and PtCl^^* was obtained at pH 2.6 (Figure 6). At a higher 
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Figure 5. Effect of solution pH on the wavelength at peak absorbance for chromium (VI). 
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Figure 6. Separation of anionic chloro-metal complexes. Column: 100 x 4.6 mm packed with 
PS-DVB triamine resin; eluent: IS mM sodium perchlorate at pH 2.S8; detection: UV at 200 
nm. Peaks: 1 = AuCV (4.0 ppm); 2 = RhCl^  ̂(3.2 ppm); 3 = PtCl^^* (O.S ppm). 
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pH, the baseline became more noisy. 

The separation of major anions in a tap water sanq)le is shown in Figure 7. The 

bicarbonate in the water was undoubtedly converted to carbonic acid by the acidic eluent (pH 

3.8) or by the acidic protonated resin. The interesting feature of this separation is the very 

large difference in retention times between the chloride and sulfate peaks. 

3.4. Separation of oî amc compoimds 

The new resin consists of a hydrophobic resin baclcbone which is modified by the 

presence of very polar triamine groups. A 10-cm column packed with the triamine resin was 

washed vath SO mM aqueous hydrochloric acid to protonate the amine nitrogen. Then the 

column was washed with water and finally with the aqueous-acetonitrile solution to be used 

as the mobile phase. Excellent separations of alkylphenols and allgrlbenzenes were obtained 

using 50% and 60% aqueous acetonitrile, respectively (Figure 8 and 9). The average 

theoretical plate number for the alkylphenols was approximately 2,100 for the 10-cm column. 

Chromatograms of both sample mixtures were run again after treating the colimm with 

dilute sodium hydroxide to eliminate any protonation of the nitrogens. The peaks were 

significantly broader and retention times were slighdy longer. Thus, better results were 

obtained with the more polar, protonated resin. 

4. Concliisioiis 

A polymeric resin with triamine fimctional groups is an efGcient material for ion-

chromatographic separation of inorganic anions. A unique feature of this resin is that 
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Figure 7. Application of the new stationary phase for analysis of anions in tap water. 
Coiimm: 100 x 4.6 mm packed with PS-DVB triamine resin; eluent: 2.5 mM potassium 
hydrogen phthalate at pH 3.80; detection; conductivi .̂ Peaks: 1 = chloride; 2 = sulfate. 
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Figure 8. Separation of alkylphenols. Column: 100x4.6 mm packed with PS-DVB triamine 
resin; eluent: acetonitriie-water (50:50); detection: UV at 254 nm. Peaks: 1 = phenol (7.0 
ppm); 2 = p-cresol (10 ppm); 3 = 4-ethylplienol (10.0 ppm); 4 = 4-n-propyIphenol (8.0 
ppm); 5 = 4-n-butylphenol (15 ppm); 6 = 4-n-amylphenol (20 ppm); 7 = 4-n-heptylphenol 
(25 ppm). 
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Figure 9. Separation of alkylbenzenes. Eluent: acetonitrile-water (60:40); other conditions 
same as Figure 8. Peaks: 1 = benzene (35 ppm); 2 = toluene (35 ppm); 3 = ethylbenzene 
(45 ppm); 4 = propylbenzene (60 ppm); 5 = buQrlbenzene (60 ppm). 
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retention times of sample anions can be varied widely simply by changing the pH of the 

mobile phase. In acidic solutions 2- anions are much more strongly retained than anions with 

I- charge. The new resin is also an effective hydrophilic column packing material for 

separation of phenols and all^lbenzenes by HPLC with an aqueous-acetonitrile mobile phase. 
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Jie Li and James S. Fritz 
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Ames, Iowa 50011, U. S. A. 

Summary 

For the separation of neutral compounds by micellar electrokinetic chromatography, 

separations are usually carried out in predominantly aqueous solution in order to preserve 

the charged micelle necessary for the separation. We now show that PAH compounds can 

be separated efficiently by capillary electrophoresis in pure methanol or in aqueous-organic 

mixtures containing a high percentage of methanol. Sodium tetradecyl sulfate was the 

preferred surfactant. The effects of pH, solvent composition, surfactant structure and 

surfactant concentration on the separations were studied. Reproducible migration times and 

linear calibration plots were obtained. 
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1 Latroduction 

Since its inception, capillary electrophoresis (C!E) has developed into a powerful 

technique for the separation of a wide varied of neutral compounds as well as inorganic and 

organic ions [1-7]. Most CE applications have been carried out in aqueous buffers because 

water is easy to handle and dissolves most chemicals used in CE. Extensive knowledge about 

chemistry in aqueous phases is available. However, the attainable diversi^ in the background 

electrolyte properties in water is limited and is largely determined by the physicochemical 

parameters of water. Organic solvents have different physical and chemical characteristics 

from water and from each other. Therefore, when a nonaqueous medium is substituted for 

water, all important properties of CE separations, such as resolution, selectivity, efficiency 

and analysis time, can be gready influenced. 

CE applications in nonaqueous media have been gaining popularly over the last several 

years. For example, nonaqueous media have been successfidly applied for chiral separations 

[8] and drug purity tests [9, 10]. Valko, ^ al concisely reviewed CE in nonaqueous media 

[11]. The important properties of organic solvents and ±eir potential in CE were discussed. 

Several conmionly used nonaqueous solvents include acetonitrile [12,13], methanol [14-17], 

formamide [18-21], N-Methylformamide [22], and N, N-dimethylformamide [23]. Compared 

with aqueous media, nonaqueous solvents offer wider ranges of dielectric constant, polariQr, 

viscosity, and acid/base chemistry. Besides, currents are generally lower in nonaqueous 

media than they are in aqueous buffers of the same ionic strength [18]. An additional 

advantage about CE in nonaqueous media is the better compatibility with electrospray mass 

spectrometry detection because organic solvents of low viscosity can improve the spray 
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efficiency, as shown by several reports in this area [24-28]. CE systems using solvent 

mixtures have also been employed to alter the selectivity [9, 14, 21]. 

Virtually all CE separations in nonaqueous solvents have been concerned with ions or 

ionizable compounds where their intrinsic charges could be used for separation. Separation 

of neutral analytes is possible only when the analytes are associated with a charged surfactant 

or other additive in solution or in a mice liar pseudo phase. A high fraction of an organic 

solvent in the background electrolyte solution (BGE) has tacitly been assumed to prevent the 

interaction between surfactant and analytes necessary for separation of neutral analytes. 

However, Walbroehl and Jorgenson [29] were able to separate six neutral organic compounds 

in aqueous-organic solutions containing 50% or more of acetonitrile by the addition of a 

tetrahejQriammonium salt to the BGE. They attributed the separation to association in solution 

between the analytes and the charged additive. More recently, Shi and Fritz [3, 7] and Ding 

and Fritz [1, 6] have used various charged additives to separate neutral analytes in solutions 

containing up to 40% acetonitrile, and polymerized surfactants have also been employed for 

separation of neutral organic compounds [30]. 

In the present work it is shown that neutral organic compounds can be separated 

successfully in aqueous-organic solutions containing 70% to 100% methanol. An anionic 

surfactant was added to the BGE to form charged association complexes with the analytes 

through solvophobic interactions. The effects of several parameters on the separations were 

studied, including the Qrpe and concentration of surfactant, the percentage of methanol in the 

BGE, and the apparent pH. 
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2 Materials and methods 

2.1 Chemicals 

All chemicals were of the best grade available. Organic solvents, phosphoric acid 

(85%), hydrochloric acid (HCl), acetic acid, ammonium acetate and sodium dodecyl sulfate 

(SDS) were purchased from Fisher Scientific (Fair Lawn, NJ, USA). Sodium n-tetradecyl 

sulfate (STS) and sodium n-hexadecyl sulfate (SHS) were obtained from Lancaster Synthesis 

(Windham, NH, USA). Deionized water (18.2 MQ) was made with a Bamstead Nanopure 

n system (Sybron Bamstead, Boston, MA, USA). Background electrolytes were prepared 

by mixing desired buffer species and surfactant in pure methanol or solvent mixture, and the 

solutions were filtered through a 0.45 foa syringe filter (Costor, Cambridge, MA, USA) 

when necessary. The apparent pH of the electrolytes was measured with a Coming 440 pH 

meter (Coming, NY, USA). 

The standards of PAH compounds were purchased from Aldrich (Milwaukee, WI, 

USA). Acidic and basic dmgs were purchased from Sigma (St. Louis, MO, USA). All stock 

solutions were made in acetonitrile at concentrations of 1000 - 2000 ppm. Before injection, 

sample solutions were diluted with 5% background electrolytes in methanol. 

Because a lot of organic substances with different toxicities were involved in this work, 

safeQr was paid much attention. Throughout the work, safety gloves and protective clothing 

were used, and aU solutions were prepared in the hood. 

2.2 Iiistrumentation 

A Waters (Quanta 4000 capillary electrophoresis system (Millipore Waters, Milford, 

MA, USA) was employed throughout this work. Uncoated fused silica capillaries had the 
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dimension of 45 cm x 50 fon, and the length from injection end to the detector was 37 cm. 

Unless specified, a voltage of -20 kV was applied for all experiments, and the airrent 

generated was kept below 30 fiA. Direct UV detection was performed at 254 nm miless 

indicated. Electropherograms were collected at the speed of 15 points/s and plotted by 

Chromperfect data acquisition system (Justice Innovations, Mountain View, CA, USA). 

Each new capillaiy was conditioned with 0.1 M sodium hydroxide and deionized water 

for 10 min each. When changing the electrolytes, capillaries were rinsed with deionized 

water for 10 min, followed by methanol rinsing for 1 min. Before each sample injection, 

capillaries were rinsed with the running electrolyte for 1.5 min. Due to solvent evaporation, 

electrolyte reservoirs were frequently replenished between runs. 

3 Results and Disciission 

Several organic solvents, including methanol, acetonitrile and isopropyl alcohol, were 

tried initially as the separation medium. These solvents were chosen because of their purity, 

ready availability and relatively minor toxicity. Methanol was found to better dissolve the 

buffer and surfactants than the other two, so it was employed as the separation solvent for 

all of this work. 

3.1 Selection of tiie BGE 

In methanol and in aqueous-methanol solvent mixtures containing a high proportion of 

methanol, the pH of common buffers is apt to be significantly different from predominantly 

aqueous solutions. The pH measured by standard electrodes in these largely organic solutions 

is often referred to as "apparent pH" (pH*). 
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The effect of apparent pH on the migration and separation of perylene and anthracene 

was studied initially using SDS as the additive and methanol as the solvent. With 10 mM 

ammonium acetate as the buffer the apparent pH of the BGE was about 8.0. At this apparent 

pH the electroosmotic mobiliQr should be reasonably high. In this case, a counter EOF 

occurred: EOF toward the cathode, and the analytes moved to the anode by assuming 

negative charges through the association with SDS. Since EOF was relatively high at pH"' 

~ 8.0, the migration time was quite long; about 30 min for perylene and 32 min for 

anthracene. Addition of some acetic acid in the BGE resulted in lower pH'*' and somewhat 

shorter migration times; but the improvement was slight. This observation led us to take 

another approach. By using acidic conditions, EOF would be reduced or eliminated, and the 

analysis could be much faster. Hydrochloric acid (HCl) and phosphoric acid (H3PO4) at 10 

mM were each tried for this purpose. The BGE containing HCl had pH* ~ 1.0, and the one 

containing H3PO4 had pH* ~ 2.8. As expected, the migration times were significantly 

shorter with both HCl and H3PO4. Comparing HCl with H3PO4, HCl gave faster analysis 

(16.6 min vs 17.3 min for perylene, 17.7 min vs 18.5 min for anthracene), but H3PO4 

produced lower current because of its smaller conductance. So H3PO4 was selected over HCl 

as the preferred buffer. 

The concentration effect of H3PO4 in the BGE was also smdied, and the plot of analyte 

migration time vs. H3PO4 concentration was shown in Figure 1. From this figure, it is 

obvious that as H3PO4 content was changed from 10 mM to 50 mM, there was a slow but 

steady increase in migration times for all the test compounds although the resolution did not 

change much. This increase was thought to be the result of the increased ionic strength as 
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Figure 1. Effect of H3PO4 concentration on the migration time. Electrolyte contained H3PO4 
and 50 mM SDS in methanol; electrokinetic sampling, 15s * 3kV. Samples: • 
Benzo[a]perylene; • Perylene; a Pyrene; a Anthracene; O Benzophenone. 
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more H3PO4 was included in the BGE. Similar reports have been published about the 

influence of ionic strength on the migration behavior of the analytes in NACE [8]. For this 

work, low H3PO4 concentration was chosen to keep current low. A separation of five PAH 

compounds was shown in Figure 2 using 10 mM H3PO4 and 50 mM SDS in methanol. 

3.2 Types and concentration of anionic surfactant 

In order to separate the neutral compoimds by CE, ionic additives which can put 

charges onto the analytes through various interactions must be included in the BGE. This 

work employed long-chain anionic surfactants in the NACE running buffers. Surfactants with 

different chain length, including SDS, STS and SHS, were compared. Figure 3 shows the 

separations of five PAH compounds with 50 mM of STS and SHS in methanol. Compared 

with Figure 2, the resolution was obviously better with longer-chain surfactants. Longer 

surfactants have stronger solvophobic interactions with the analytes, and this is beneficial for 

their separations. 

Figures 4-6 illustrate the relationship between electrophoretic mobilities of five PAH-

complexes and the concentration of the surfactants. Electrophoretic mobilities were measured 

in methanol containing 10 mM H3PO4 and varying content of surfactants. Migration times 

were used directly to calculate the mobilities because EOF was negligible at the conditions 

applied. SDS and STS concentration were varied from 10 to 70 mM, while SHS 

concentration was increased from 10 to 50 mM only due to its limited solubility at higher 

concentrations. The figures show that as the concentration of surfactants increases, so do the 

mobilities of the solutes. The slopes of the plots are greater for larger compounds and 

smaller for smaller, more polar compounds. This indicates stronger interactions between 
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Figure 2. Separation of five PAH conq)ounds. Electrolyte: 10 mM H3PO4 and 50 mM SDS 
in methanol; sample injection: -2kV« iSs. Peaks: 1. Benzo[a]peryIene; 2. Perylene; 3. 
Pyrene; 4. Anthracene; 5. Benzophenone. 
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Figure 3. Separation of five PAH compounds. Electrolyte: 10 mM H3PO4, 50 mM STS or 
50 mM SHS in methanol; sample injection: -2kV * 15s. Peaks: same as Figure 2. 
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Figure 4. Electrophoretic mobility vs SDS concentration. Electroljrte: 10 mM H3PO4 and 
SDS in methanol; sample injection: -2kV * 15s. Samples: • Benzo[a]peryIene; • Perylene; 
A Pyrene; a Anthracene; O Benzophenone. 
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Figure 5. Electrophoretic mobility vs STS concentration. STS was used in the electrolyte; 
other conditions same as Figure 4. Samples: same as Figure 4. 
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Figure 6. Electrophoretic mobility vs SHS concentration. SHS was in the electrolyte; other 
conditions same as Figure 4. Samples: same as Figure 4. 
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larger compounds and die surfactants. On the other hand, the plots with longer chain 

surfactants are steeper than those with shorter chain surfactants. This again indicates the 

stronger interactions between the analytes and the surfactants with longer chains. Walbroehl 

and Jorgenson [29] suggested a dynamic equilibrium mechanism between the associated and 

the unassociated forms of the analytes to account for their migration. This mechanism is also 

consistent for our results, as indicated by the steadily increasing mobilities in the plots in 

Figures 4-6. Since the analyte concentration was less than 0.25 mM, the concentration of 

the surfactants were at least 40-times higher than that of analj^s. If an irreversibly bound 

complex were formed, a 10-fold excess of surfactants would be enough to completely bind 

the analytes, and further increases in surfactant concentrations would not lead to a large 

increase in electrophoretic mobilities. 

Another anionic surfactant, sodium dioctyl sulfosuccinate (DOSS), was also tested for 

this study. DOSS has been used successfully for separations of nonionic compounds in 

aqueous buffers containing up to 40% ACN [311. However, it did not work for our system 

with 100% methanol as the mediimi. Presumably, its branched structure could not provide 

strong enough interactions with the analytes in methanol for the analytes to come out within 

a reasonable time. In other words, the surfactant additives with linear long chains were the 

most effective in separating nonionic compounds in organic solvents. Considering both the 

solubility and efficiency, STS was the best additive tested. 

3.3 Solvent mixtures 

The separation window (i.e., the difference in migration times between the first and last 

analytes) was quite small in pure methanol for the analytes tested. The low boiling point of 
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pure methanol made it necessary to keep the current low to avoid evaporation of methanol 

through heating. Because of these concerns, 90/10 (% v/v) mixtures of methanol-formamide, 

methanol-acetonitrile and methanol-H20 were tried with nine PAH compounds as sample 

analytes, and 70 mM STS and 10 mM H3PO4 in the BGE. The methanol-formamide mixture 

gave a much wider separation window, but the separation took much longer (— 38 min for 

benzophenone) and the efRciency was poor. With methanol-acetonitrile, the separation 

showed little improvement in the elution window and resolution, and the efficiency was even 

worse. The mixture of methanol-H20 provided a wider window and better resolution without 

prolonging the separation, and the electrophoregram for this separation was included in 

Figure T.Compared the separation of nine PAH compounds in 90/10 (%v/v) methanol-HjO 

with that in pure methanol, where several compounds comigrated with each other (3 and 4, 

5 and 6) or only were partially resolved (6 and 7), baseline separation was obtained in this 

mixed solvent system. 

In order to study the effect of water, the methanol content in the BGE was varied from 

100% to 70%. Lower concentrations of methanol were not used because of low solubility 

of STS in the BGE. Figure 8 demonstrates the change of electrophoretic mobilities with the 

percentage of methanol. As in Figures 4-6, electrophoretic mobilities were calculated from 

migration time without considering EOF because it was too small. The curved graph of 

electrophoretic mobilities in Figure 8 was considered to be the combined results of two 

factors; (a) solvophobic interactions between the analytes and the surfactant additive; (b) the 

variation of viscosiQr (r/) and dielectric constant (e) as the percentage of methanol was 

changed. The effect of methanol content on rj and e in binary water-methanol mixtures has 
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Figure 7. Separation of nine PAH compounds. Electrolyte: 10 mM H3PO4 and 70 mM STS 
in 90/10 (% v/v) methanol - HjO; sample injection; -3kV » 15s. Peaks: 1. Benzo[a]peiylene; 
2. Perylene; 3. Benzo[a]anthracene; 4. Pyrene; 5. 9-methylanthracene; 6. Anthracene; 7. 
Fluorene; 8. Naphthalene; 9. Benzophenone. 
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Figure 8. Electrophoretic mobility vs % methanol in the BGE. Electrolyte contains 10 mM 
H3PO4 and 70 mM STS in methanol-H20; sample injection; -3kV * 15s. Samples: same as 
Figure 4. 
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been very well studied in the literature [11]. It was found that 6 and rj became smaller as 

methanol concentration in water was increased from 70% to 100%; however, the ratio of e/rj 

grew bigger within the same range. Since electrophoretic mobility is directly proportional 

to 6/t7, it should increase at higher concentrations of methanol. On the other hand, the 

solvophobic interactions become weaker at higher concentration of methanol so the 

electrophoretic mobility of an analyte due to complex formation will be smaller. Between 

70% and 80% methanol, solvophobic interaction was likely the predominant factor, so 

electrophoretic mobilities decreased. Above 80% methanol, a rising mobility trend was 

observed due to the greater e/rj ratio. Benzo[a]perylene and perylene showed a slight decline 

in mobility because of their relatively strong interactions with STS. Figure 8 also indicated 

a wider separation window and better separation at lower methanol content, as illustrated by 

Figure 9 for the separation of nine PAH compounds in 75/25 methanol-HjO mixture. 

3.4 Separation scope and validation of the method 

The high proportion of methanol in the solutions used has a strong tendency to weaken 

the interactions between the analjrtes and the surfactant. The success of the separations 

reported is likely due to the ability of the hydrophobic and fairly buU^ test compounds to 

resist the effect of high methanol content. To test this hypothesis several more polar 

compounds (acidic and basic pharmaceutical compounds) were tested. Figure 10 shows the 

separation of six drugs that would be neutral at the acidic apparent pH used. Although the 

separation was complete, the migration times were quite long. This is caused by weaker 

association of the relatively polar drugs with STS. 

Figure 11 shows the electropherogram for four basic drugs with a positive power supply 
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Figure 9. Separation of nine PAH compounds. Electrolyte: 10 mM H3PO4 and 70 mM STS 
in 75% methanol - 25% HjO; sample injection: -3kV » 15s. Peaks: same as Figure 7. 
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Figure 10. Separations of acidic pharmaceutical compounds. Electrolyte; 10 mM H3PO4 and 
70 mM STS in 85% methanol -15% HjO; sample injection: -2.5kV* 15s; detection: 
UV@214 nm. Peaks: 1. Indomethacin; 2. Fenoprofen; 3. Ketoprofen; 4. a-hydroj^hippuric 
acid; 5. 1,7-dimethylxanthine; 6. jS-phenylpyruvic acid. 
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Figure 11. Separation of basic pharmaceutical compounds. Electrolyte: 100 mM H3PO4 in 
85% methanol - 15% HjO; sample injection: -2.5kV • 15s; voltage: +20 kV; detection: 
UV@254 nm. Peaks: 1. Cytidine; 2. Guanosine; 3. SulfE^yridine; 4. Uridine. 
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and no surfactant present. This separation is due to the intrinsic positive charges on the 

protonated analytes. However, these compounds are very weak bases and thus may be 

incompletely protonated. 

Tests for reproducibility of migration times and linearity of calibration plots were 

performed with perylene and benzophenone as sample analytes. The BGE contained 50 mM 

SDS and 10 mM H3PO4 in methanol; samples were injected hydrostatically. Replenishing the 

BGE between runs, the results from eight consecutive runs showed very good reproducibility 

for the migration times. The RSD for perylene and benzophenone was 0.55% and 0.73%, 

respectively. 

As ahown in Figures 12 and 13, plots of peak height and peak area as a fimction of 

analyte concentration were linear for benzophenone between 0.005 mM and 0.60 mM. The 

correlation coefficient was 0.9997 for peak height and 0.9995 for peak area. Similar plots 

for perylene between 0.005 mM and 0.40 mM were slighdy curved with a linear correlation 

coefficient of 0.985 for peak height and 0.995 for peak area. The curvature in the perylene 

plot was probably due to its limited solubility at the higher concentrations. 

4 Concluding remarks 

The ability to work in predominantly nonaqueous solutions adds a valuable new 

dimension to our technology for separation of neutral compounds by CE. Nonaqueous CE 

with methanol as separation medium has been successfiilly applied for separation of nonionic 

organic compounds as well as acidic and basic drugs. Methanol does not provide a wide 

elution window, but addition of a low percentage of water into methanol largely overcomes 
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Figure 12. Plot of peak height vs. concentration of analytes. Electrolyte: 50 mM SDS and 
10 mM H3PO4 in methanol; hydrostatic sampling: 12 s at 10 cm height. 
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Figure 13. Plot of peak area vs. concentration of analytes. Electrolyte: 50 mM SDS and 10 
mM H3PO4 in methanol; hydrostatic sampling: 12 s at 10 cm height. 
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this limitatioii. In methanol-water mixtures, separations are affected both by the solvophobic 

interactions between the analytes and the surfactant additives and by the ratio of dielectric 

constant over viscosity. 
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Abstract 

Addition of either ethanesulfonic acid or protonated triethylamine to the background 

electrolyte markedly improves the separation of protonated anilines by capillary 

electrophoresis. These additives appear to form a thin coating on the capillary surface via 

a dynamic equilibriimi. This results in a change in electroosmotic flow and reduces 

interactions of the sample cations with the silica surface. A mixture of ten substimted anilines 

could be separated, including several positional isomers. Migration times of the sample 

cations were reproducible with a RSD less than 1.0%. 
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1. Introduction 

Organic bases can be separated by capillary electrophoresis (CE) as protonated cations 

by operating at an acidic pH. Lin et al separated B-blockers using citrate buffer at a very 

acidic pH [1]. Basic proteins and peptides have been separated at acidic pH values with a 

positively-charged surfactant additive in the background electroljrte (BGE) [2, 3]. The 

surfactant is adsorbed on the capillary walls, giving a positive surface that repels the protein 

cations and prevents their adsorption. Chiral bases have been resolved by CE using chiral 

additives such as native and derivatized 6-cyclodextrins [4-6]. Organic bases may also be 

separated in their molecular form by micellar electrokinetic chromatography. Sodium dodecyl 

sulfate (SDS) [7], tetraalkylammonium salts [2-4, 8], bile salts [9, 10] and glycopyranoside-

based surfactants [11, 12] have been used for this purpose. In some cases, especially for 

protein separations, polymers were employed to coat capillary surface covalently or 

adsorptively so that the interactions between the analytes and silanol groups on the capillary 

surface were decreased or eliminated. Poly(ethylene glycol) (PEG) [13-15], poly(vinyI 

alcohol) (PVA) [16] and poly(ethyIene oxide) [17] are a few examples of the polymers used. 

Generally, the additives mentioned above are quite large. While they have usually 

worked well for the separation of basic compounds, there are some problems with their 

usage. Surfactants and other large additives may form thick coatings on the capillary surface. 

Ding and Fritz demonstrated that the coating could continue to build up from run to run, thus 

causing a gradual increase in migration time [2]. It may be difficult to remove the coating 

completely when experimental conditions are changed. 

Published work suggests that the use of much smaller molecules as BGE additives may 
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effectively inhibit unwanted interactions between sample cations and the silica surface of the 

capillary. Incorporation of ethanesulfonic acid in the BGE was fouiKi to markedly improve 

the CE separation of protonated amino acids [18] and basic drugs [19] at an acidic pH. 

Quang and Khaledi found that tetrabutylammonium salts improved the chiral separation of 

bases with 6-cyclodextrin at pH 2.5 [4]. Triethylammonium salts have often been used in 

HPLC to block secondary interactions between analytes and the silica-based stationary phase 

[20], which indicates its potential as the BGE additive for CE separations. 

This research has two main goals. One was to tind conditions for a practical CE 

separation of substituted anilines of very similar chemical structure. Compounds of this type 

are potential environmental pollutants [21-23]. Several groups reported the separation of 

chloro- and nitro- substimted anilines by different techniques [24-26]; however, nothing 

about the separation of allQrl-substituted anilines could be found. The second, and perhaps 

more important goal, was to study the effect of some small organic ions as CE electrolyte 

additives on the separation of protonated organic bases. A low concentration of 

ethanesulfonic acid (ESA) or protonated triethylamine (TEA) in the BGE was found to 

greatly improve the separation of organic cations and to provide excellent reproducibility of 

the migration time. Experiments were performed to elucidate the mechanism of ESA and 

TEA with the silica surface of the capillary. 

2. Experimental 

A Waters (Quanta 4000 capillary electrophoresis system (Millipore Waters, Milford, 

MA, USA), equipped with a positive power supply, was employed to separate anilines under 
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acidic conditions and generate all electropherograms. Polyimide-coated fused silica capillaries 

(Polymicro Technologies, Phoenix, AZ, USA) were 45 cm in total length (37 cm effective 

length) with an 1. D. of 50 fan. Direct UV detection was performed at 229 mn. A voltage 

of +15 kV was applied for all separations. All samples were injected electrokinetically, and 

electroosmic flows (EOF) were measm^ with the "accelerated method" introduced by 

Sandoval and Chen [27] with formamide and DMSO as neutral markers. Electropherograms 

were collected at speed of 15 points/s and plotted by Qiromperfect data acquisition system 

(Justice Innovations, Mountain View, CA, USA). 

Standards of substimted anilines, ethanesulfonic acid (ESA), tnethylamine and 

diethylenetriamine were purchased from Aldrich (Milwaukee, WI, USA). Organic solvents 

were obtained from Fisher Scientific (Fair Lawn, NJ, USA). All chemicals were the best 

grade available. All standards and buffer solutions were prepared with 18.2 MQ deionized 

water by a Bamstead Nanopure II system (Sybron Bamstead, Boston, MA, USA). Buffers 

were made by mixing phosphoric acid and ethanesulfonic acid/amine additives, and adjusting 

pH with 1 M sodium hydroxide or 1 M phosphoric acid before 2-propanol was added. 

Each new capillary was conditioned with 1 M sodium hydroxide for 1 h, followed by 

1-h rinsing with deionized water. Each day, prior to use, capillaries were rinsed with 0.1 M 

sodium hydroxide and deionized water for 10 min each. When different running buffers were 

used, capillaries were rinsed with the desired buffer for 10 min following the NaOH and D. 

I. HjO rinsing. Before each sample injection, capillaries were rinsed with the running buffer 

for 3 min. 
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3. Results and Discussioii 

3.1 Effect of ESA on the separation of anilines 

3.1.1 Preliminary experiments 

Preliminary experiments at an acidic pH gave very poor CE separations of various 

protonated anilines when no additive was used in the CE buffer solution. A similar situation 

had been observed for the CE separation of protonated amino acids [18]. Varying the pH or 

increasing the phosphate concentration in the buffer improved the resolution somewhat, but 

separation of the aniline mixture was still far from complete, and the peaks were broad and 

somewhat tailed. Addition of 30 - 50 mM ESA to the BGE was found to gready improve the 

separation of the substimted anilines. 

Preliminary results on buffer pH established pH 3 - 4 as the optimum range, so the 

subsequent experiments were performed within this range. 

3.1.2 Selection of an organic solvent 

Experiments were performed in which the BGE contained 50 mM ESA in addition to 

a phosphate buffer, and part of the water in the buffer was replaced with an organic solvent. 

Three types of organic solvent, acetonitrile, 2-propanol and 1-butanol, were smdied, and 

each solvent was tested with several concentrations in the buffer composition; 2.5%, 5.0%, 

7.5% and 10% (2.5% and 5.0% only for 1-butanol). Electropherograms are given in Figure 

1 and 2 comparing acetonitrile and 2-propanol as organic modifiers. The results with 2-

propanol showed better resolution and peak shape for the aniline separations, probably due 

to the better solvation of the analytes by 2-propanol, while the analysis rime did not differ 

much for three solvents. So 2-propanol was chosen as the organic solvent. A concentration 
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Figure 1. Separation of substituted anilines with acetonitrile as organic modifier. Electrolyte 
contained 50 mM ESA, 10 mM phosphate and 7.5% acetonitrile at pH 3.70; electrokinetic 
sampling. 8s * 5kV. Peaks: 1 = aniline; 2 = 4-ethyiamline; 3 = 3-ethylamline; 4 = 4-
propylaniline; 5 = 4-iso-propylaniline; 6 = 4-butylaniline; 7 = 4-sec-butylaniline; 8 = 2-
ethylaniline; 9 = 2-iso-propylaniline; 10 = 2-propylamline. Each analyte was 50 ppm in 
sample solution. 
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Figure 2. Separation of substituted anilines with 2-propanol. Conditions same as Figure 1 
except that acetonitrile was replaced by 2-propanol. Peaks no.: same as Figure 1. 
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of 7.5% 2-propanol itself in the buffer gave slightly better separation of 10 substituted 

anilines than other concentrations (Figure 2 and 3). Therefore, 7.5% 2-propanol was added 

to the electrolytes for all the following studies. 

3.1.3 pH effect 

The pH study was confined to pH 3.0 - 4.0. Outside this range, the separation was not 

acceptable; the baseline was noisy and several analytes comigrated. As shown in Table 1, 

measured or predicted pICa values are available for several of the substituted anilines and 

ranged approximately from 4.4 to 5.1 [28]. Between pH 3.0 and 4.0, the substituted anilines 

would be partially protonated to different degrees. This would give different mobilities and 

contribute to a better separation. Without this effect, the separation could be based only on 

small differences in analyte structure and would be much more difficult. 

Figure 4 shows the effect of buffer pH on the migration behavior of the substituted 

anilines. It is evident that all the analytes migrated slower at higher buffer pH, as would be 

expected. The pH for the best separation of all ten of the anilines studied was determined 

from Figure 4 to be 3.65 with ESA as the additive. 

3.1.4 Effect of ESA on EOF and electrophoretic mobility 

A more complete picture of the effect of the electrolyte additives can be obtained by 

measuring the electroosmotic flow (EOF) and the electrophoretic mobilities as a function of 

the additive concentration. Plots for ESA at pH 3.65 are given in Figure 5. The EOF 

dropped rapidly and then decreased much more slowly as ESA concentration was increased. 

This would indicate a decrease in surface negative charge. A thin layer of ESA is most likely 

adsorbed on the silica surface via a dynamic equilibrium [18]. Adsorption of ESA may 
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Figure 3. Separation of substituted anilines with 2-propanol at different concentration. 
Conditions same as Figure 2 except that percentage of 2-propanol in the BGE was changed. 
Peaks no.: same as Figure 2. 
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Table 1. pKa values for the analytes used in this study. 

No. Conq)ound pKa 

1 aniline 4.60 

2 2-ethylaniline 4.44" 

3 3-ethylamline 4.78" 

4 4-ethylaniline 5.01» 

5 2-propylaniline * 

6 2-isopropylaniline 4.49» 

7 4-propylamline 5.01" 

8 4-isopropylaniline 5.01' 

9 2-butylaniline * 

10 2-sec-butylaniline * 

11 4-butylaniline 5.04" 

12 4-sec-butylaniline 5.13' 

13 4-teit-butyIaniline 5.01" 

a. predicted value based on ref. 28. 

insufficient data. 
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Figitte 4. Effect of buffer pH on the migratioii time of substituted anilines. Electrolyte: 10 
mM phosphate, SO mM ESA, 7.5% 2-propanol; electrokinetic sampling, 8s * 5kV. Sample 
I.D.: 1 = aniline; 2 = 4-ethylaniline; 3 = 3-ethylaniline; 4 = 4-propylaniline; 5 = 4-iso-
propylaniline; 6 = 4-butylaniline; 7 = 4-sec-buQrlaniline; 8 = 2-ethylaniline; 9 = 2-iso-
propylaniline; 10 = 2-propylaniline. 
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Figure 5. Effect of ESA concentratioii on EOF and electrophoretic mobilities of substituted 
anilines. Electrolj^: 10 mM phosphate, 7.5% 2-propanol, pH 3.65; electroldnetic sampling, 
8s • 5kV. Sample I.D.: same as Figure 4. 
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involve hydrogen bonding between the sulfonate groups and the surface silanol groups of the 

silica capillary, so that some of the surface negative charges are covered up by ESA. 

Adsorption of a second layer of ESA, which would give a more negative surface, seems 

unlikely because the hydrocarbon chains of the ESA are too short to provide much 

hydrophobic attraction. 

Figure 5 shows that the electrophoretic mobilities also decrease somewhat with the 

increasing ESA concentration. This is probably due to a certain amount of ion-pair formation 

between the protonated anilines and the negatively-charged ESA. 

BH^ + ESA" Ion pair 

[ionpair] 

[BH*MESA -] 

A decrease in the fraction of analyte present as the fi^ cation (BH^) would decrease its 

electrophoretic mobility. Differences in the equilibrium constants (K) of the various analytes 

would lead to improved separations. 

From Figure 5, an ESA concentration within 40 - 60 mM seems to be optimal for the 

separation of substimted anilines. Included in Figure 6 was the separation of some anilines 

with 55 mM ESA in the background electrolyte. Several butylaniline positional isomers were 

baseline resolved under this condition. 

3.1.5 Plate nimiber 

Ding found that addition of ethanesulfonic acid (ESA) to the BGE gave much sharper 

peaks for the separation of basic drugs at pH -2.5 in aqueous electrolytes containing 10% 
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Figure 6 .  Separation of substituted anilines; Electrolyte: 55 mM ESA, 15 mM phosphate, 
7.5% 2-propanol at pH 3.65; electiokiiietic sampling: 8s * SkV. Peaks: (A) same as Figure 
1; (B) 1 = 4-butylaniline; 2 = 4-tert-butylamline; 3 = 2-sec-bu^lamline; 4 = 2-
butylaniline. Each analyte was 50 ppm. 



www.manaraa.com

94 

Table 2. Comparison of plate number (N) and peak asymmetry factor (PAS) for separations 
with and without ESA as the BGE additive. Electrolyte: 10 mM phosphate, 7.5% 2-
propanol, pH 3.65. Electrokinetic sampling, 8s * 5kV. 

N PAS 

Compound 
0 mM ESA 50 mM ESA 0 mM ESA 50 mM ESA 

Aniline 22,000 81,000 2.34 0.60 

2-propylaniline 54,000 127,000 0.32 0.88 

acetonitrile [19]. In the present woiic, addition of ESA was shown to improve both peak 

sharpness and peak symmetry. Typical values for CE separation of anilines at pH 3.65 in 

aqueous solution containing 7.5% 2-propanol with or without ESA as BGE additive were 

shown in Table 2. 

3.1.6 Reproducibility 

The run-to-run reproducibility of the aniline migration times was determined by 

replicate injections (n = 5) on the same capillary. Four anilines were used as sample 

analytes. No treatment of the capillary was performed between runs except for a brief rinsing 

with fresh buffer. The data in Table 3 for buffers containing 55 mM ESA gave migration 

times with an average RSD of 0.9%. These results indicate that ESA in the buffer leads to 

excellent reproducibility and that no appreciable buildup of ESA occurs on the capillary 

surface. 
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Table 3. Reproducibility test based on five consecutive runs (n = 5). For ESA, electrolyte contained 15 mM 
phosphate, 55 mM ESA and 7.5%2-propanol at pH 3.65; for TEA, electrolyte contained 50 mM phosphate, 40 
mM TEA and 7.5% 2-propanol at pH 3.45. Electrokinetic sampling, 8s • 5kV. 

ethanesulfonic acid (ESA) triethylamine (TEA) 

compound ! ! ; ""T" i TT" TZTTTTTT 
migration time (mm) RSD (%) migration time (mm) RSD (%) 

aniline 6.39 0.8 9.07 0.4 

4-ethylaniline 6.92 0.8 9.99 0.5 

3-ethylaniline 7.22 0.9 10.55 0.5 

2-ethylaniline 8.27 1.1 12.63 0.7 
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3.2 Effect of amine additives 

3.2.1 pH effect 

Addition of 40 mM of protonated triethylamine (TEA) to the BGE instead of ES A also 

improved the peak sharpness and resolution of the aniline analytes. The pH study in Figure 

7 showed that a pH of 3.45 gave the best resolution of the test mixture. Migration times 

were longer with TEA than with ESA as the additive. 

3.2.2 Effect of amine additives on EOF and electrophoretic mobility 

The protonated forms of two amine additives were studied: triethylamine (TEA) and 

diethylenetriamine (DETA). Figure 8 shows a much greater change in EOF for TEA than 

was observed for ESA. The EOF decreased steadily within the concentration range smdied, 

and its direction was reversed from positive to negative as the amount of triethylamine in the 

buffer increased. This clearly pointed out the adsorption of triethylamine onto the capillary 

surface. This adsorption could probably involve several aspects: the electrostatic interactions 

between the negative capillary surface and the triethylamine cations, the hydrogen bonding 

between the silanols and the amino groups, and perhaps the hydrophobic interactions between 

the alkyl chains and the siloxane groups, which are known to exhibit hydrophobic character 

[29, 30]. The electrophoretic mobilities of the analytes did not vary much within the same 

concentration range, which indicated the absence of the interactions between the substimted 

anilines and triethylamine. A higher concentration of TEA gave a better separation of 

substituted anilines. This occurred because of a higher EOF counter to electrophoretic 

mobilities, which increased migration times and gave better peak resolution. Figure 9 shows 

the separation of anilines with 40 mM TEA as the BGE additive. 
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Figure 7. Effect of buffer pH on the migratioii time of substituted anilines. Electrolyte: 40 
mM triethylamine, 50 mM phosphate, 7.5% 2-propanoi; electrokinetic sampling, 12s * 3kV. 
Sample ED.: same as Figure 4. 
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Figure 8. Effect of triethylamine concentration on EOF and electrophoretic mobilities of 
substituted anilines. Electrolyte: 50 mM phosphate, 7.5% 2-propanol, pH3.45; electrokinetic 
sampling, 12s • 3kV. Sample I.D.: same as Figure 4. 
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Figure 8. Separation of substituted anilines. Electrolyte: 40 mM triethylamine, 50 mM 
pho^hate, 7.5% 2-propanol, pH 3.45; electrokinetic sampling, lOs » 4kV. Peaks: (A) 
as Figure Ij (B) 1 = 4-butylaniline; 2 = 4-sec-butylaniline; 3 = 4-tert-butyIaniline; 4 = 2-
sec-buQrlaniline; 5 = 2-buQrlaniline. Each analyte was 50 ppm. 
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Diethylenetriamine (DETA) was also briefly investigated as a buffer additive. Under 

the conditions for this study (pH 3.65), each DETA molecule possesses more than two 

positive charges, so it is more polar than both ESA and triethylamine. As DETA 

concentration was varied from 0 to 30 mM, the EOF decreased and reached a certain value 

instead of being reversed. Probably, DETA could interact with the surface only through 

hydrogen bonding. Unlike triethylamine, its high polarity prevented the hydrophobic 

interaction between DETA molecules and the siloxane groups, and its structure made it 

impossible to form DETA-bilayer on the surface and reverse the EOF. However, the 

electrophoretic mobilities did not change much, which is similar to the variation with 

triethylamine. Therefore, it is likely that there is no interaction between the analytes and 

these cationic additives. 

3.2.3 Reproducibility 

Run-to-run reproducibility (n = 5) of migration times was determined at pH 3.45 in 

CE buffer solutions containing 7.5% 2-propanol and 40 mM protonated TEA. The average 

RSD (Table 3) was 0.5%. 

4. Conclusions 

Small anionic or cationic buffer additives, such as ESA and protonated TEA, were 

shown to improve the separation of protonated organic bases. These additives appear to form 

a thin coating on the capillary surface which modifies the electroosmotic and electrophoretic 

mobilities. Most likely, the additives reduce or prevent interaction of the sample cations with 

the capillary surface, thereby giving sharper sample peaks. Excellent reproducibility (< 1 % 
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RSD) of migration times was obtained. 

A mixture of ten substimted anilines was separated with near baseline resolution. The 

compounds separated included several positional isomers as well as isomers with primary, 

secondary and tertiary butyl groups. 
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CHAPTER 5. SEPARATION OF ORGANIC AND INORGANIC ANIONS 
BY ION CHROMATOGRAPHY - CAPILLARY ELECTROPHORESIS 

A paper submitted to Analytical Chemistry 

Jie Li, Weiliang Ding and James S. Fritz 
Ames Laboratory - U.S. Department of Energy and 

Department of Chemistry, Iowa State University 
Ames, Iowa 50011, U. S. A. 

Abstract 

Capillary electrophoresis with a water-soluble ion-exchange polymer in the background 

electrolyte is very efficient for the separation of organic and inorganic anions because the 

ion-exchange selectivity, as well as differences in electrophoretic mobility, can be used for 

separating sample ions. Poly(diallyldimethylammonium chloride) (PDDAC) was employed 

for this purpose. A very stable electroosmotic flow was obtained between pH 2.3 - 8.5 due 

to the strong adsorption of PDDAC onto the capillary wall. The effect of ion exchange on 

the migration of sample anions and their separation was controlled by varying the 

concentration of PDDAC, the concentration and the type of salt used in the CE background 
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electrolyte (BGE). Addition of organic solvent (e.g., acetonitrile) could also modify the 

sample migration and the separation. Baseline separations were obtained for anions with very 

similar mobilities, such as bromide and iodide, naphthalenesulfonates, and bi- and tri­

carboxylic acids. Typical separation efficiencies were between 195,000 and 429,000 

theoretical plates per meter. Ten replicate separations gave an average RSD of 1.0% for 

migration times of the sample anions smdied. Excellent separations were obtained for a 

variety of samples, including a separation of 17 inorganic and organic anions in less than 6 

min. 

1. Introductioii 

Since its introduction in the late 1970s, ion chromatography (IC) has become the 

dominant analytical method for separating and determining inorganic anions and small 

organic anions'*^. Separations in IC are based on differences in the affinity of sample anions 

for the exchange sites on a solid anion exchange material in the separation column. 

Movement of the sample anions along the colunm is caused by pumping a mobile phase 

containing a competing anion through the column. Samples containing several anions can 

usually be resolved satisfactorily by IC. 

Capillary electrophoresis (CE) offers significandy higher separation power than IC for 

anions'"'̂ . As many as 36 anions have been separated within a very few minutes by CE'. 

These separations are based on differences in the electrophoretic mobilities of the sample 

anions. Anions with almost identical mobilities, such as bromide and iodide, cannot usually 

be separated by CE. A number of background electrolyte (BGE) additives have been used 
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to modify the mobilities of anions and thereby improve their separation. These include 

cationic surfactants*" '̂ '®, polyvalent metal cations"*^ and various cyclodextrins '̂. 

The method now proposed, IC-CE, combines two mechanisms for separation of anions. 

The separation is carried out in a fused silica capillary using standard CE instrumentation. 

However, a water-soluble anion-exchange polymer is added to the BGE to impart an ion 

exchange component to the separation. Thus, ordinary CE is based only on differences in 

sample ion mobility while IC is based on differences in affinity of sample anion and eluent 

anion (the BGE anion) for the ion-exchange sites. The migration orders of the two 

mechanisms may be different. For example, the CE migration order for halogens is I", Br 

> CI" > F whereas the IC migration order is F > CI* > Br > I". 

A limited amount of work in this area has ahready been reported. Combining ion 

exchange with capillary electrophoresis was first proposed by Terabe and Isemura '̂" for 

separating organic anions with almost identical mobilities. Cassidy and coworkers also 

smdied the effect of cationic polymers on the CE separation of both inorganic and organic 

anions using indirect photometric detection^". Polymers with different chemical structures 

and molecular weights were compared. Although these publications laid out the basic 

framework of IC-CE, the effect of BGE salt concentration on the ion-exchange equilibrium 

was apparently not considered. By varying the anion concentration in the BGE, the 

interaction of the sample anion with the anion-exchange polymer can be either increased or 

decreased so that migration times may be kept within a desired range. Contrary to previous 

expectations. Ding and Fritz^ reported that practical CE separations are possible in BGE salt 

solutions as high as S M. A moderately high salt concentration (e.g., 1(X) - 250 mM) in the 
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BGE was shown to significantly improve peak sharpness, apparently by providing conditions 

favorable for electrostacking. 

The present woric describes the separation of both inorganic and organic anions using 

a cationic polymer, poly(diallyldimethylammomum chloride) (PDDAC, or simply as P^), and 

an added salt at moderately high concentration. The system used provides a valuable new 

parameter for achieving rapid, practical separations of anions including those of similar 

chemical structures. 

2. Experimental section 

Reagents. Poly(diallyldimethyianmionium chloride) (PDDAC), hexadimethrene 

bromide (HDM) (also called polybrene), organic acids and poly (sodium 4-styrene sulfonate) 

were purchased from Aldrich (Milwaukee, WI). Acetonitrile, boric acid and all inorganic 

salts, except lithium sulfate, were supplied by Fisher Scientific (Fairlawn, NJ). Lithium 

sulfate was the product of Sigma (St. Louis, MO). 

Separation Conditioiis. All separations were performed on a Waters (Quanta 4000 CE 

system (Milford, MA). Unless otherwise specified, the following conditions were used; 

uncoated fused silica capillaries (Polymicro Technologies, Phoenix, AZ) were 50 ^m i.d., 

40 cm long with an injection-to-detection length of 32.5 cm. Separations were obtained at 

ambient temperature with the voltage of -10 kV. Direct UV detection was at 214 nm. 

Hydrostatic injection was 40 s at 10 cm height. Electropherograms were collected at speed 

of 15 points/s and plotted by Chromperfect data acquisition system (Justice Innovations, 

Mountain View, CA). 
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All standard and electrolyte solutions were prepared with 18.2 MQ deionized water 

from a Bamstead Nanopure n system (Sybron Bamstead, Boston, MA). Stock analyte 

solutions were made with deionized water at 5,000 ppm, and diluted in 10% buffer solutions 

to desired concentration prior to injection. Electrolyte solutions were prepared by mixing 

lithium sulfate, PDDAC, 20 mM boric acid, and acetonitrile when needed, and adjusting pH 

with 2 M sodium hydroxide or 1 M hydrochloric acid. All pH values were measured with 

a Coming 440 pH meter (Coming, NY) calibrated immediately prior to use. 

Each new capillary was conditioned with 0.1 M sodium hydroxide and deionized water 

for 1 hr each. Prior to use, capillaries were rinsed with 0.1 M sodium hydroxide and 

deionized water for 10 min each, followed by a 30-min rinsing with buffer solution. Between 

injections, capillaries were automatically purged with buffer for 3 min. 

3. Theory 

Terabe and Isemura^ derived an equation for the difference in velocity of two ions (Av) 

when a soluble polymeric anion exchanger is added to the BGE. 

In this equation, and Kj are ion-pair constants; [P^] is the polymer ion concentration; Vf„ 

and Vp are electrophoretic velocities of free anal3rte ion and polymer ion, respectively. The 

magnirnde of Av is affected by the differences in Ki and K2, and by the concentration of 

polymers, P"^. 
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The ion-exchange equilibrium between a sample anion (A) and the polymer ion 

exchanger (P^Cl ) is given by the following equation: 

P^Cr + A- P^A" + cr (2) 

for which the equilibrium constant (K) is: 

[A-\[P-Cn 

At a fixed concentration of P^Cl", a conditional constant, K', may be written as follows: 

K'=K\P*Cl-] 

Combining equation (3) and (4), and rearranging: 

(5) 
[ P M ]  K '  

The migration rate of a sample anion will be proportional to the ratio of [A"]:[P'̂ A"]. The 

fraction of sample anion present as the free anion (A ) will migrate rapidly toward the anode, 

while the fraction associated with the ion exchanger (P'̂ A ) will move but slowly in the 

opposite direction. These equations show that salt concentration in the BGE (Cr in this 

example) as well as the polymer ion concentration and the equilibrium constant, K, will have 

a major effect on sample analyte migration. 



www.manaraa.com

I l l  

4. Results and Discussion 

4.1. Choice of polymer. Preliminary experiments were performed with each of several 

polymers added to the BGE at a pH value of 8.5. A relatively high concentration (120 - 150 

mM) of a salt, such as sodium chloride or lithium sulfate, was found to markedly improve 

the sharpness of sample anion peaks. Poly(diallyldimethylammonium chloride), abbreviated 

as FDD AC, at a concentration of 0.05% or 0.3% was the most satisfactory of the polymers 

tested. Its structural formula is given in Figure 1. A mixture of bromide, iodide, nitrate, 

nitrite, chromate, thiocyanate and molybdate was baseline resolved in a BGE solution 

containing 150 mM lithium sulfate, 20 mM borate and 0.05% FDDAC at pH 8.5 (Figure 

2). In the absence of FDDAC it is not possible to separate bromide and iodide because their 

electrophoretic mobilities are almost identical. 

The other polymers tested did not perform as well as FDDAC. Polyethyleneimine 

(FEI), poly aery lamide and polyvinylpyrrolidone provided incomplete resolution of the seven 

Figure 1. Structure of FDDAC. Molecular weight: low: 100,000 - 200,000; medium: 
200,000 - 350,000; high; 400,000 -500,000. 
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Figure 2. Separation of inorganic anions. Electrolyte: 150 mM Li2S04, 20 mM borate, 
0.05% PDDAC, pH 8.5; other conditions as specified in experimental section. Peaks: 1 = 
Br; 2 = I ; 3 = NOz"; 4 = NOj"; 5 = CrO^^-, 6 = SCN"; 7 = MoO^^-. 
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Table 1. Effect of electrolyte pH on the reversed EOF and migration time of inorganic 
anions. Electrolyte solution contains 150 mM 02804, 0.05% PDDAC and 20 mM borate or 
acetate or hydrochloric acid for desired pH. EOF marker: water. Other conditions as 
described in experimental section. 

EOF Migration Time (min) 

pH (cm^A/^s) 
Br I NO, SCN 

2.3 -2.46 X 10^ 1.98 2.06 2.17 2.34 

5.0 -2.65 X 10^ 1.95 2.03 2.13 2.30 

8.5 -2.74 X 10^ 1.93 2.00 2.10 2.26 

inorganic test anions. The latter two polymers also gave a rather high background absorbance 

at the wavelength used. 

4.2 Effect of BGE pH. Cationic polymers are known to adsorb strongly onto the 

capillary wall so that electroosmotic flow (EOF) can be reversed from positive to negative^. 

For the present work, the EOF reversal was also observed after the addition of PDDAC in 

the BGE. To check the stabiliQr of PDDAC adsorption on the silica surface, the effect of pH 

on EOF was smdied with PDDAC concentration controlled at 0.05%, and the results were 

summarized in Table 1. As pH was increased, there was only very minor change in EOF, 

indicating a strong and stable adsorption of PDDAC. A direct result of this strong adsorption 

is the residual free silanol groups are insignificant in affecting EOF. 

As the pH increases, sample anions showed a slight decrease in migration times due 

to the small increase of EOF. Further work was all performed at pH 8.5 because anions 
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from both strong and weak acids can be analyzed under alkaline conditions. 

4.3 Effect of PDDAC concentration. The effect of PDDAC concentration on both 

EOF and electrophoretic mobility of 9 sample anions is reported in Figure 3. In the range 

covered, 0.1 % to 1.0% PDDAC, the EOF was virtually unchanged. This indicates either that 

the capillary surface is more or less completely covered by the polymer even at the lowest 

concentration, or that any increase in zeta potential was compensated by increased viscosity 

as the bulk PDDAC concentration was increased. 

Equations 2 and 3 predict that increasing concentration of PDDAC (abbreviated as P*^) 

will result in a higher fraction of a sample anion (A ) being associated with the ion-exchange 

polymer. This in turn will result in a slower rate of migration for the sample anion (equation 

5). The electrophoretic mobilities of the sample anions in Figure 3 do become smaller as the 

concentration of PDDAC is increased. The decrease in mobility of sample anions 6 - 9 is 

much greater than that of anions 1-5. The naphthalenesulfonates (6 and 7) are more bulky 

than anions 1-5 and would therefore interact more strongly with the anion-exchange 

polymer. Anions 8 and 9 would also interact strongly with the polymer by the virtue of their 

higher charges (2- or 3-) at pH 8.5. 

The data in Figure 3 predict that resolution of this mixture of anions would be very 

poor without the ion-exchange effect of the PDDAC. Separation of 1- and 2-

naphthalenesulfonic acids is, for example, not possible by CE alone. Complete resolution of 

all 9 anions except for p-hydroxybenzoic acid and p-aminobenzoic acid in a solution 

containing 0.3% PDDAC is shown in Figure 4A. Baseline resolution of all 9 anions was 

obtained with 1.0% PDDAC, as shown in Figure 4B, although the separation takes longer 
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Figure 3. Effect of PDDAC concentration on EOF and electrophoretic mobilities of organic 
anions. Electrolyte contains 150 mM Li2S04, 20 mM borate and PDDAC at pH 8.5. Other 
conditions as specified in experimental section. Samples: 1 = benzoate; 2= 
benzenesulfonate; 3 = p-toluenesulfonate; 4 = p-aminobenzoate; 5 = p-hydroxybenzoate; 
6 = 2-naphthalenesulfonate; 7 = 1-naphthalenesulfonate; 8 = 3,5-dihy^oxybenzoate; 9 = 
2,4-dihydroxybenzoate; 10 = water for EOF. 
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Figure 4. Separation of nine organic anions. Electrolyte contains 150 mM Li2S04, 20 mM 
borate, 0.3% (A) or 1.0% (B) PDDAC at pH 8.5; other conditions as specified in 
Experimental. Peak numbers same as Figure 3. 
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and the baseline is noisier. Comparison of Figures 4A and 4B shows several changes in 

elution order as predicted by crossovers for anions 1 and 2, and 3, 4 and 5 in Figure 3. 

4.4 Effect of polymer molecular weight. FDD AC of high molecular weight (400,000 -

500,000), medium molecular weight (200,000 - 350,(XX)) and low molecular weight 

(1(X),(XX) - 2(X),000) were compared for use in IC-CE. In the initial experiments, a better 

separation of inorganic anions was obtained with the material of high molecular weight. 

However, later experiments gave similar results for inorganic and organic anions with the 

high-molecular-weight FDD AC and that of lower molecular weight. Hexadimethrene bromide 

(polybrene), a material with quaternary ammonium groups and a considerably lower 

molecular weight than any of the FDD AC, gave much poorer separations. For example, 1-

and 2- naphthalenesulfonates were incompletely separated with 0.3% polybrene (a = 1.02), 

but were baseline separated with 0.3% FDDAC (a = 1.035). The EOF was also lower with 

polybrene, suggesting a thinner surface coating on the capillary surface. 

4.5 Effect of added salt. Increasing concentrations of a salt added to the BGE will 

decrease the ion-exchange effect and cause sample anions to migrate more rapidly (equation 

5). This is demonstrated in Figure 5 where higher NaCl concentrations are shown to repress 

ion-exchange interactions and lead to more rapid migration rates. The change in 

electrophoretic mobility is more pronounced for iodide, which undergoes a stronger ion 

exchange effect than bromide. Similar effects were noted for other salts added to the BGE. 

The effect of salt concentration was also smdied by comparing separation of several 

inorganic anions in 50, 100 and 150 mM lithium sulfate in the BGE. While the EOF was 

virtually unchanged at different lithium sulfate concentrations, the best resolution was 
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Figure 5. Effect of NaCl concentratioii on EOF and electrophoretic mobilities of bromide 
and iodide. Electrolyte contains NaCl, 20 mM borate, 0.05% PDDAC at pH 9.0; other 
conditions as specified in experimental section. EOF maricer: D. I. H2O. Symbols: O = Br; 
• = I. 
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Table 2. Comparison of plate number (N) for inorganic anions at different salt 
concentrations. Electrolyte: 02804, 20 mM borate, 0.05% PADDC, pH 8.5. N = 
5.54(t/w,j2. 

Concentration of Plate Number (N) 

LiiSO^i (mM) ! I 
^ ^ ^ Br CrO/ SCN- Mo04^ 

50 80,000 69,000 49,000 60,000 

100 107,000 143,000 71,000 138,000 

150 100,500 153,000 86,000 152,000 

obtained at 150 mM concentration (Figure 2). In 50 mM lithium sulfate, the sample anions 

migrate more slowly (2.2 to 2.7 min compared to ca. 1.9 to 2.4 min in 150 mM) but 

resolution of nitrite, iodide and nitrate was very poor. Increased salt concentration also 

favored the separation efficiency. Theoretical plate numbers for several of the sample anions 

on a 40-cm capillary in 50 and 150 mM lithium sulfate were compared in Table 2, and 

larger plate numbers were ontained with higher salt concentration. More peak focusing 

through electrostacking is a likely reason for the better peak efficiency at the higher salt 

concentrations. 

The type of salt, as well as its concentration, can have a major effect on the migration 

of sample anions. In ion chromatography sulfate is known to have a much stronger affinity 

for a solid quaternary ammonium anion exchanger than acetate, for example. In IC-CE 

acetate wiU have a much smaller inhibiting effect on the ion-exchange of sample anions with 
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PDDAC than the same concentration of sulfate. The migration dmes of bromide and iodide 

in 150 mM lithium sulfate are 5.74 min and 6.88 min, respectively (a = 1.20). In 150 mM 

sodiimi acetate the migration times are 6.08 min for bromide and 8.77 min for iodide (a = 

1.44) (other conditions; 0.3% PDDAC, pH 9.0, injection-to-detection length of 52.5 cm). 

The stronger ion-exchange interactions of bromide and iodide in sodium acetate lead to 

longer migration times and a larger separation factor for bromide and iodide. 

The counter ion of the BGE salt, as well as the particular anion, can also affect sample 

i o n  m i g r a t i o n  i n  I C - C E .  E x a m p l e s  a r e  s h o w n  i n  F i g u r e  6  a n d  7 .  M i g r a t i o n  o f  a n i o n s  6 - 9  

is slower in chloride than in sulfate due to stronger ion-exchange interactions. However, a 

comparison of 6a with 7a, and 6b with 7b also shows longer migration times in the lithium 

salt than the sodium salt of the same anion. It is known that lithiimi salts can form weak 

complexes or ion-pairs with carboxylates. This would tend to reduce fiuther the fraction of 

sample analytes present as the free anions. 

4.6 Effiect of organic solvent. Ion-exchange selectivity on a solid ion exchanger for 

various sample anions appears to consist of at least two components^-'®. One might be 

termed the "pure" ion exchange that stems from the attraction of sample anions for the ionic 

sites of opposite charge on the ion exchanger. Another component is the hydrophobic 

attraction of the sample anions for the organic matrix of the ion exchanger. The presence of 

an organic solvent in the liquid phase can reduce the latter interaction substantially. The 

question to be answered is whether an organic solvent will have a similar effect on the 

present system where the ion-exchange polymer is totally soluble in the liquid phase. 

Introduction of organic solvents into the otherwise aqueous BGE is used frequently to 



www.manaraa.com

121 

. .A L 

migration lime (min) 

Figure 6. Separation of nine organic anions with lithium salt. Besides 20 mM borate and 
0.8% PDDAC, electrolyte also contains ^2864 (a) or LiQ (b) at ISO mM and pH 8.5; other 
conditions as specified in Experimental. Peak numbers same as Figure 3. 
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Figure 7. Separation of nine organic anions with sodium salt. Conditions same as Figure 6 
except that Na2S04 (a) or NaCl (b) replaced lithium salt in the BGE. Peak numbers same as 
Figure 3. 
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alter both the selectivity of a separation and the In the current work acetonitrile 

was added to the BGE to determine its effect on the separation, and more importantly, to 

clarify the ion-exchange mechanism between the analytes and PDDAC. PDDAC has 

hydrophobic moieties in its backbone, so it should be capable of interacting with analytes via 

hydrophobic interactions^^ besides the evident ion exchange interaction. Since hydrophobic 

interactions are affected more by the solvent than ion exchange, acetonitrile should 

substantially reduce migration times for analytes where hydrophobic interactions are 

predominant. 

Figure 8 shows the effects of adding acetonitrile to the BGE at concentrations of 15% 

and 30%. Concentrations much above 30% caused PDDAC to partially separate from the 

liquid phase. Some reduction in the EOF is generally observed in CE when acetonitrile is 

added to an aqueous electrolyte, but the sharper reduction between 15 % and 30% acetonitrile 

is likely the result of a decreased adsorption layer of PDDAC on the capillary surface. 

The effect of acetonitrile on the electrophoretic mobility is rather small for anions 1 -

5 in Figure 8. However, anions 6 and 7, which contains bulkier naphthalene groups rather 

than phenyl groups, have significantly higher electrophoretic mobilities in the solutions 

containing acetonitrile. This would be the result of decreased ion-exchange and/or 

hydrophobic interactions with PDDAC. The ability to resolve the peaks of these two anions 

has in fact been destroyed by the incorporation of 30% acetonitrile in the BGE. 

Addition of some acetonitrile to the BGE in IC-CE can be beneficial in some cases. For 

example, 3- and 4-hydroxycinnamic acids could not be separated in aqueous solution, 

whereas addition of 7.5% acetonitrile to the BGE gave an excellent separation with 
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Figure 8. Effect of acetonitrile concentration on EOF and electrophoretic mobilities of 
organic anions. Electrolyte contains 150 mM 02804, 20 mM borate, 0.8% PDDAC and 
acetonitrile at pH 8.5; other conditions as specified in Experimental. Sample numbers same 
as Figure 3. 
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resolution of approximately 10. 

4.7 Scope and reproducibility of IC-CE separations. Inorganic anions tend to have 

significantly shorter migration times than the larger aromatic carboxylate and sulfonate 

anions. Mixtures of both of these general types can be separated in a single run by IC-CE, 

as shown in Figure 9. All 17 peaks were well resolved and, with the exception of 2,4-

dihydroxybenzoate, the peaks were very sharp and narrow. Data from 10 consecutive runs 

gave actual plate nimibers ranging from 63,000 to 140,000. The average plates per meter for 

the anions in this table ranged from 195,000 for iodide to 429,000 for phthalate, with an 

overall average of 292,000 (Table 3). The reproducibility of migratin time for each and 

every peak was excellent with a RSD of 1.0% or 1.1%. The RSD of peak areas had an 

overall average of 5.5 %. However, no special precautions were taken to ensure that a precise 

amount of sample was introduced each time. 

Several additional sample mixtures of organic anions were separated under a variety 

of conditions to illustrate the broad scope of IC-CE. As shown in Figure 10, three isomeric 

phthalic acids were baseline separated in about 3.8 min using an electrolyte solution 

containing 0.3% PDDAC, 120 mM lithium sulfate and 20 mM borate at pH 8.5; and a 

separation of three isomeric benzenetricarboxylic acids was also obtained under the same 

conditions, with 1,2,3-tricarboxylic acid eluted at 3.47 min followed by 1,2,4- at 3.81 min 

and 1,3,5- at 4.36 min. A mixture of six different cinnamic acids, two pairs of which are 

positional isomers, was completely resolved provided 7.5% acetonitrile was added to the 

BGE that contained 0.8% PDDAC and 150 mM lithium sulfate at pH 8.5 (Figure 11). 

Separations of valine and norvaline, and of leucine and norleucine are considered to be 
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Figure 9. Separation of 17 inorganic and organic anions. Electrolyte: 120 mM 1^2^04, 20 
mM borate, 0.3% PDDAC, pH 8.5; other conditions as specified in Experimental. Peaks; 
1 = bromide; 2 = nitrate; 3 = chromate; 4= iodide; 5 = molybdate; 6 = phthalate; 7 = 
1.2,3-tricarboxylate; 8 = 1,2-beiizenedisulfonate; 9 = terephthalate; 10 = isophthalate; 11 
= benzoate; 12 = p-toluenesulfonate; 13 = 1,3,5-tricarboxylate; 14 = 2-
naphthalenesulfonate; 15 = 1-naphthalenesulfonate; 16 = 3,5-dihydroxybenzoate; 17 = 2,4-
dihydroxybenzoate; x = unidentified impurity. 
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Table 3. Reproducibility study for inorganic and organic anions. Conditions same as Figure 
9. Data from 10 consecutive injections (n = 10) were for calculation of RSD. 

plate number RSD (%) 

anion per meter (N) 
migration time peak area peak height 

bromide 263,000 1.1 9.6 5.1 

nitrate 276,000 1.1 4.3 7.4 

iodide 194,500 1.1 3.1 4.7 

benzoate 362,400 1.1 6.2 8.7 

p-toiuenesulfonate 331,700 1.0 6.2 9.1 

phthalate 429,400 1.0 7.2 10.4 

terephthalate 313,000 1.1 6.2 6.1 

isophthalate 278,200 1.0 3.2 10.7 

1,2-benzenedisulfonate 363,000 1.0 5.0 7.8 

1,2,3-tricarboxylate 408,000 1.1 4.6 10.9 

1 -naphthalenesulfonate 333,700 1.1 6.2 7.6 

2-napbtbalenesulfonate 357,500 1.1 3.7 7.6 
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Figure 10. Separation of bi- and tri- carboxyiic acids. Same conditions as Figure 9. Peaks: 
(a) 1 = ptithalic acid; 2 = terephthalic acid; 3 = isophthaiic acid; 4 = unidentified 
in^uri^; (b) 1 = 1,2,3-tricarbojQrlic acid; 2 = 1,2,4-tricarboxylic acid; 3 = 1,3,5-
tricarboxytic acid. 
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Figure 11. Separation of cinnamic acids. Electrolyte contains ISO mM 1^2^04, 20 tnM 
borate, 0.8% PDDAC and 7.5% ACN at pH 8.5; other conditions as specified in 
Experimental. Peaks: 1 = trans-cinnamic acid; 2 = 4-hydroxycinnamic acid; 3 = 3-
methoxycinnamic acid; 4 = 2-methoxycinnamic acid; 5 = 3, 4-dihydroxycuinamic acid; 6 
= 3-hydroxycinnaniic acid. 
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difficult, yet these were completely resolved within a few minutes by IC-CE using a 33-cm 

capillary and 0.3% PDDAC in the BGE. A mixture of six nucleotides, i.e., UMP, CMP, 

AMP, ADP, GMP and ATP, was also separated successfully with 0.3% PDDAC on a 60-cm 

capillary. In general, the resolution of these compounds of biological interest requires careful 

choice of electrolyte pH and added salt. For instance, while valine and norvaline were best 

separated with 80 mM potassium fluoride at pH 9.53, and leucine and norleucine were near 

baseline separated with 60 mM lithium sulfate at the same pH, the nucleotides were resolved 

at pH 9.0 using 80 mM lithium sulfate. 

All of the separations reported in this work have used direct photometric detection. 

Separations with indirect photometric detection are also feasible, as demonstrated by Cassidy, 

et al^-^, but the higher salt concentrations used here make indirect detection more difHcult. 

5. Conclusions 

IC-CE combines two methods of separation in a single technique. Electrophoretic 

migration of sample ions toward the detector in addition to EOF in the same direction 

combine to give reasonably fast migration times for both inorganic and organic anions. Ion 

exchange interactions between sample anions and the positively charged polymer slow down 

the analyte migrations to varying degrees and enhances our ability to separate complex 

mixtures. A high salt concentration in the BGE decreases the ion exchange effect while a 

higher concentration of polymer strengthens the ion exchange effect. The relatively high salt 

concentrations used in this work sharpen sample peaks by electrostacking and also appear 

to improve reproducibility by reducing sample ion interactions with the silica surface of the 
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capillary. 

IC-CE need not be limited to the separation of anions. The same principles should 

apply to the separation of sample cations using a soluble polymer containing sulfonate or 

other anionic groups to make the polymer a cation exchanger. The hydrophobic parts of ionic 

polymers may also be useful for separation of nonionic sample components based on their 

difference in interaction in solution. 
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CHAPTER 6. GENERAL CONCLUSIONS 

A novel polymeric resin with triamine functional groups was prepared and demonstrated 

to be an efficient material for ion-chromatographic separation of inorganic anions. A imique 

feature of this resin is that retention times of sample anions can be varied widely simply by 

changing the pH of the mobile phase. In acidic solution, 2- anions are much more strongly 

retained than anions with 1- charge. Common anions in tap water as well as anionic chloro-

metal complexes are well separated on the column packed with this new anion-exchange 

resin. This resin is also an effective hydrophilic column packing material for separation of 

phenols and alkylbenzenes by HPLC with an aqueous - acetonitrile mobile phase. 

The ability to work in predominantly nonaqueous solutions adds a valuable new 

dimension to our technology for separation of neutral compounds by capillary electrophoresis. 

Nonaqueous CE with methanol as separation medium has been successfully applied for 

separation organic compounds as well as acidic and basic drugs. These separation are 

achieved through the addition of anionic surfactants to the CE electrolytes so that nonionic 

compounds can obtain different apparent mobilities by interacting with the surfactants; larger 

molecules interact more strongly with the surfactants than smaller molecules, leading to 

greater mobility and faster migration of these large compounds, such as benzo[a]perylene and 

perylene. Methanol does not provide a wide elution window, but addition of a low percentage 

of water into methanol can largely overcome this limitation. Compared with pure solvent, 

solvent mixtures have different properties, such as dielectric constant and viscosity. In 

methanol-water mixtures, resolutions are affected by the solvophobic interactions between the 
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analytes and the surfactant and by the ratio of dielectric constant over viscosity, which has 

an impact on anaiyte mobility and electroosmotic flow. 

Polymers and surfactants are commonly used as buffer additives to improve CE 

separations of basic compounds. They often form thick coatings on silica capillary surface, 

and the coating could gradually build up from run to run. Small ionic additives, such as 

ethanesulfonic acid (ESA) and protonated triethylamine (TEA), are shown to improve the 

separation of protonated organic bases. These additives appears to form a thin coating on the 

capillary surface which modifies the electroosmotic and electrophoretic mobilities. For 

example, EOF is decreased by ESA, and addition of TEA to the BGE can even reverse the 

direction of EOF. Most likely, these additives reduce or prevent interaction of the sample 

cations with the capillary surface, thus giving sharper sample peaks. Separation of substituted 

anilines, including several positional isomers as well as isomers with primary, secondary and 

tertiary butyl groups, were obtained with ESA and TEA as additives. 

Ion chromatography - capillary electrophoresis (IC-CE) combines two methods of 

separation in a single technique. Addition of an water soluble anion-exchange polymer to CE 

electrolyte has dual advantages. The cationic poljnner can adsorb onto the capillary surface 

to produce a reversed EOF, and fast analyses for both inorganic and organic anions are 

achievable due to the same direction of EOF and electrophoretic migration of sample anions 

toward the detector. More importantly, ion exchange interactions between sample anions and 

the positively charged polymer slow down the anaiyte migrations to varying degrees and 

enhances the ability to separate complex mixtures. A high salt concentration in the BGE 

decreases the ion exchange effect while a high concentration of polymer strengthens the ion 
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exchange effect. The relatively high salt concentrations used in this work sharpen sample 

peaks by electrostacking and also appears to improve reproducibility by reducing sample ion 

interactions with the capillary surface. Also, improved reproducibility is possible because 

adsorption of the polymer onto silica capillary surface provides a well-controlled 

electroosmotic flow. 
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